Skip to main content
Log in

Acid phosphatase production by recombinant Arxula adeninivorans

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Acid phosphatase production by recombinant Arxula adeninivorans was carried out in submerged fermentation. Using the Plackett–Burman design, three fermentation variables (pH, sucrose concentration, and peptone concentration) were identified to significantly affect acid phosphatase and biomass production, and these were optimized using response surface methodology of central composite design. The highest enzyme yields were attained in the medium with 3.9% sucrose and 1.6% peptone at pH 3.8. Because of optimization, 3.86- and 4.19-fold enhancement in enzyme production was achieved in shake flasks (17,054 U g−1 DYB) and laboratory fermenter (18,465 U g−1 DYB), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Büttner R, Bode R, Birnbaum D (1991) Characterization of extracellular acid phosphatases from the yeast Arxula adeninivorans. Zentralbl Mikrobiol 146:399–406

    Article  Google Scholar 

  • Chen HC (1996) Optimizing the concentrations of carbon, nitrogen and phosphorous in a citric acid fermentation with response surface method. Food Biotechnol 10:13–27

    Article  CAS  Google Scholar 

  • Dassa E, Cahu M, Desioyaux-Cherel B, Boquet PL (1982) The acid phosphatase with optimum of 2.5 of Escherichia coli. J Biol Chem 257:6669–6676

    CAS  PubMed  Google Scholar 

  • Dickman MB, Yarden O (1999) Serine/threonine protein kinases and phosphatases in filamentious fungi. Fungal Genet Biol 26:99–117

    Article  CAS  Google Scholar 

  • Famurewa O, Olutiola PO (1994) Acid phosphatase synthesis in Aspergillus flavus. Microbiol 39:475–480

    CAS  Google Scholar 

  • Gienow U, Kunze G, Schauer F, Bode R, Hofemeister J (1990) The yeast genus Trichosporon spec. LS3: molecular characterization of genomic complexity. Zentralbl Mikrobiol 145:3–12

    Article  CAS  Google Scholar 

  • Guimaraes LHS, Terenzi HF, Jorge JA, Leone FA, Polizeli ML (2004) Characterization and properties of acid phosphatase with phytase activity produced by Aspergillus caespitosus. Biotechnol Appl Biochem 40:201–207

    Article  CAS  Google Scholar 

  • Kaur P, Satyanarayana T (2004) Production and starch saccharification by a thermostable and neutral glucoamylase of a thermophilic mould Thermomucor indicae-seudatiaceae. World J Microbiol Biotechnol 20:419–425

    Article  CAS  Google Scholar 

  • Kaur P, Satyanarayana T (2005) Production of cell bound phytase by Pichia anomala in an economical cane molasses medium: optimization using statistical tools. Proc Biochem 45:3095–3102

    Article  Google Scholar 

  • Kaur P, Lingner A, Singh B, Böer E, Polajeva J, Steinborn G, Bode R, Gellissen G, Satyanarayana T, Kunze G (2007) Characterization of the APHO1 gene encoding an extracellular acid phosphatase with broad substrate specificity from the yeast Arxula adeninivorans. Antonie van Leeuwenhoek 91:45–55

    Article  CAS  Google Scholar 

  • Kunze G, Kunze I (1994) Characterization of Arxula adeninivorans strains from different habitats. Antonie van Leeuwenhoek 65:29–34

    Article  CAS  Google Scholar 

  • Maddox IS, Richert SH (1977) Use of response surface methodology for the rapid optimization of microbiological media. J Appl Bacteriol 43:197–204

    Article  CAS  Google Scholar 

  • Middelhoven WJ, Hoogkamer-Te Niet MC, Kreger-Van Rij, NJW (1984) Trichosporon adeninivorans sp. nov., a yeast species utilizing adenine, xanthine, uric acid, putrescine and primary alkylamines as sole source of carbon, nitrogen and energy. Antonie van Leeuwenhoek 50:369–378

    Article  CAS  Google Scholar 

  • Middelhoven WJ, De Jong IM, De Winter M (1991) Arxula adeninivorans, a yeast assimilating many nitrogenous and aromatic compounds. Antonie van Leeuwenhoek 60:129–137

    Article  Google Scholar 

  • Middelhoven WJ, Coenen A, Kraakmann B, Sollewijn Gelpke MD (1992) Degradation of some phenols and hydroxybenzoates by the imperfect ascomyctous yeast Candida parapsilopsis and Arxula adeninivorans: evidence for an operative gentisate pathway. Antonie van Leeuwenhoek 62:181–187

    Article  CAS  Google Scholar 

  • Oshima Y (1997) The phosphatase system in Saccharomyces cerevisiae. Genes & Genet Syst 72:323–334

    Article  CAS  Google Scholar 

  • Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33:305–325

    Article  Google Scholar 

  • Rao JLUM, Satyanarayana T (2003) Enhanced secretion and low temperature stabilization of a hyperthermostable and calcium-independent α-amylase of Geobacillus thermoleovorans by surfactants. Lett Appl Microbiol 36:192–196

    Article  Google Scholar 

  • Rautanin N, Karkainen V (1951) On the phosphatase activity of low-phosphorous Torulopsis utilis. Acta Chim Scand 5:1216–1217

    Article  Google Scholar 

  • Sano K, Fukuhara H, Nakamura Y (1999) Phytase of the yeast Arxula adeninivorans. Biotechnol Lett 21:33–38

    Article  CAS  Google Scholar 

  • Sharma DC, Satyanarayana T (2006) A marked enhancement in the production of a highly alkaline and thermostable pectinase by Bacillus pumilus dcsr1 in submerged fermentation by using statistical methods. Biores Technol 97:727–733

    Article  CAS  Google Scholar 

  • Stowe RA, Mayer RP (1999) Efficient screening of process variables. Ind Eng Chem 56:36–40

    Google Scholar 

  • Suomalainen H, Linko M, Oura E (1960) Changes in the phosphatase activity of baker’s yeast during the growth phase and location of the phosphatase in the yeast cells. Biochim Biophys Acta 37:482–490

    Article  CAS  Google Scholar 

  • Terentiev Y, Gellissen G, Kunze G (2003) Arxula adeninivorans—a non-conventional dimorphic yeast of great biotechnological interest. Recent Res Dev Appl Microbiol Biotechnol 1:135–145

    CAS  Google Scholar 

  • Vaidya R, Vyas P, Chhatpar HS (2003) Statistical optimization of medium components for the production of chitinase by Alcaligenes xylosoxydans. Proc Biochem 33:92–96

    CAS  Google Scholar 

  • Van der Walt JP, Smith MT, Yamada Y (1990) Arxula gen. nov. (Candidaceae), a new anamorphic yeast genus. Antonie van Leeuwenhoek 57:59–61

    Article  Google Scholar 

  • Vohra A, Satyanarayana T (2001) Phytase production by the yeast Pichia anomala. Biotechnol Lett 23:551–554

    Article  CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2003) Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit Rev Biotechnol 23(1):29–60

    Article  CAS  Google Scholar 

  • Zyta K (1993) The role of acid phosphatase activity during enzymatic dephosphorylation of phytases by Aspergillus niger phytase. World J Microbiol Biotechnol 9:117–119

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research work was supported by grants from DAAD (Grant no. KunzD04/34139) and DST (TS-INT/DAAD/P-108/2004), a DAAD scholarship (A/04/06850), and funds from the Chemical Industry (GK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kunze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minocha, N., Kaur, P., Satyanarayana, T. et al. Acid phosphatase production by recombinant Arxula adeninivorans . Appl Microbiol Biotechnol 76, 387–393 (2007). https://doi.org/10.1007/s00253-007-1021-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1021-x

Keywords

Navigation