Skip to main content
Log in

Taxanes: perspectives for biotechnological production

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Taxol is a valuable plant-derived drug showing activity against various cancer types. Worldwide efforts had been made to overcome the supply problem, because the supply by isolation from the bark of the slow-growing yew trees is limited. Plant cell cultures as well as chemical and biotechnological semisynthesis are processes, which are intensively investigated for the production of taxanes paclitaxel (Taxol) and docetaxel (Taxotere) in the last few years. This article provides a comparison of the current research on taxane biosynthesis and production in yew cell cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bentebibel S, Moyano E, Palazon J, Cusido RM, Bonfill M, Eibl R, Pinol MT (2005) Effects of immobilization by entrapment in alginate and scale-up on paclitaxel and baccatin III production in cell suspension cultures of Taxus baccata. Biotechnol Bioeng 89:647–655. DOI https://doi.org/10.1002/bit.20321

    Google Scholar 

  • Chau MD, Croteau R (2004) Molecular cloning and characterization of a cytochrome P450 taxoid 2α-hydroxylase involved in Taxol biosynthesis. Arch Biochem Biophys 427:48–57. DOI https://doi.org/10.1016/j.abb.2004.04.016

    CAS  PubMed  Google Scholar 

  • Chau MD, Walker K, Long R, Croteau R (2004a) Regioselectivity of taxoid-O-acetyltransferases: heterologous expression and characterization of a new taxadien-5α-ol-O-acetyltransferase. Arch Biochem Biophys 430:237–246. DOI https://doi.org/10.1016/j.abb.2004.07.013

    CAS  PubMed  Google Scholar 

  • Chau M, Jennewein S, Walker K, Croteau R (2004b) Taxol biosynthesis: molecular cloning and characterization of a cytochrome P-450 taxoid 7β-hydroxylase. Chem Biol 11:663–672. DOI https://doi.org/10.1016/j.chembiol.2004.02.025

    CAS  PubMed  Google Scholar 

  • Choi H-K, Kim S-I, Son J-S, Hong S-S, Lee H-S, Chung I-S, Lee, H-J (2000a) Intermittent maltose feeding enhances paclitaxel production in suspension culture of Taxus chinensis cells. Biotechnol Lett 22:1793–1796. DOI https://doi.org/10.1023/A:1005658405449

    CAS  Google Scholar 

  • Choi H, Kim S, Son J, Hong S, Lee H (2000b) Enhancement of paclitaxel production by temperature shift in suspension culture of Taxus chinensis. Enzyme Microb Technol 27:593–598. DOI https://doi.org/10.1016/S0141-0229(00)00255-6

    CAS  PubMed  Google Scholar 

  • Christen AA, Bland J, Gibson DM (1989) Cell cultures as a means to produce Taxol. Proc Am Assoc Cancer Res 30:566

    Google Scholar 

  • Christen AA, Gibson DM, Bland J (1991) Production of Taxol or Taxol like compounds in cell culture. US Patent 5,019,504

  • Cusido RM, Palazon J, Bonfill M, Navia-Osorio A, Morales C, Pinol MT (2002) Improved paclitaxel and baccatin III production in suspension cultures of Taxus media. Biotechnol Prog 18:418–423. DOI https://doi.org/10.1021/bp0101583

    CAS  PubMed  Google Scholar 

  • De Dobbeleer C, Cloutier M, Fouilland M, Legros R, Jolicoeur M (2006) A high rate perfusion bioreactor for plant cells. Biotechnol Bioeng (in press). DOI https://doi.org/10.1002/bit.21077

    CAS  PubMed  Google Scholar 

  • DeJong JM, Liu YL, Bollon AP, Long RM, Jennewein S, Williams D, Croteau R (2006) Genetic engineering of Taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng 93:212–224. DOI https://doi.org/10.1002/bit.20694

    Google Scholar 

  • Dubois J, Guenard D, Gueritte F (2003) Recent developments in antitumour taxoids. Expert Opin Ther Pat 13:1809–1823. DOI https://doi.org/10.1517/13543776.13.12.1809

    CAS  Google Scholar 

  • Eibl R, Eibl D (2002) Bioreactors for plant cell and tissue cultures. In: Oksman-Caldentey KM, Barz W (eds), Plant biotechnology and transgenic plants. Marcel Dekker, pp 163–199

  • Ewald D, Stauber T, Zocher R (2002) Evaluation and selection of Taxus baccata L. clones according to their root growth capacity as a potential source of enzymes for taxol biosynthesis. Silvae Genet 51:133–136

    Google Scholar 

  • Fang JJ, Ewald D (2004) Expression cloned cDNA for 10-deacetylbaccatin III-10-O-acetyltransferase in Escherichia coli: a comparative study of three fusion systems. Protein Expr Purif 35:17–24

    CAS  PubMed  Google Scholar 

  • Fang WS, Liang XT (2005) Recent progress in structure activity relationship and mechanistic studies of taxol analogues. Mini-Rev Med Chem 5:1–12

    CAS  PubMed  Google Scholar 

  • Ferlini C, Ojima I, Distefano M, Gallo D, Riva A, Morazzoni P, Bombardelli E, Mancuso S, Scambia G (2003) Second generation taxanes: from the natural framework to the challenge of drug resistance. Curr Med Chem 3:133–138

    CAS  Google Scholar 

  • Frense D, Lauckner G, Lisicki D, Pflieger C, Becker M, Hensel J, Hornbogen T, Zocher R (2004) Enzymatic drug production. BioTec 15(11–12):20–21

    CAS  Google Scholar 

  • Frense D, Lisicki D, Kohlstedt E, Hermann D, Kahlert K (2005) Influence of the season, the soil composition, the exposure, and the origin of the yew on the taxane content in the yew needles. BioPerspectives—DECHEMA Annual Conference of Biotechnology, Conference Manual:153

  • Hahn FM, Poulter CD (1995) Isolation of Schizosaccharomyces pombe isopentenyl diphosphate isomerase cDNA clones by complementation and synthesis of the enzyme in Escherichia coli. J Biol Chem 270:11298–11303

    CAS  PubMed  Google Scholar 

  • Hanson RL, Wasylyk JM, Nanduri VB, Cazzulino DL, Patel RN, Szarka LJ (1994) Site-specific enzymatic hydrolysis of taxanes at C-10 and C-13. J Biol Chem 269:22145–22149

    CAS  PubMed  Google Scholar 

  • Hanson RL, Howell JM, Brzozowski DB, Sullivan SA, Patel RN, Szarka LJ (1997) Enzymic hydrolysis of 7-xylosyltaxanes by xylosidase from Moraxella sp. Biotechnol Appl Biochem 26:153–158

    CAS  Google Scholar 

  • Hanson RL, Parker WL, Patel RN (2006) Enzymatic C-4 deacetylation of 10-deacetylbaccatin III. Biotechnol Appl Biochem 45:81–85

    CAS  PubMed  Google Scholar 

  • Hefner J, Ketchum REB, Croteau R (1998) Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase from Taxus canadensis and assessment of the role of this prenyltransferase in cells induced for Taxol production. Arch Biochem Biophys 360:62–74. DOI https://doi.org/10.1006/abbi.1998.0926

    Google Scholar 

  • Huang KX, Huang QL, Wildung MR, Croteau R, Scott AI (1998) Overproduction, in Escherichia coli, of soluble taxadiene synthase, a key enzyme in the Taxol biosynthetic pathway. Protein Expr Purif 13:90–96. DOI https://doi.org/10.1006/prep.1998.0870

    CAS  PubMed  Google Scholar 

  • Huang QL, Roessner CA, Croteau R, Scott AI (2001) Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg Med Chem 9:2237–2242. DOI https://doi.org/10.1016/S0968-0896(01)00072-4

    CAS  Google Scholar 

  • Jennewein S, Rithner C, Williams R, Croteau R (2001) Taxol biosynthesis: taxane 13a-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci USA 98:13595–13600. DOI https://doi.org/10.1073/pnas.251539398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jennewein S, Wildung MR, Chau M, Walker K, Croteau R (2004a) Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in Taxol biosynthesis. Proc Natl Acad Sci USA 101:9149–9154. DOI https://doi.org/10.1073/pnas.0403009101

    Google Scholar 

  • Jennewein S, Long RM, Williams RM, Croteau R (2004b) Cytochrome P450 taxadiene 5a-hydroxylase, a mechanistically unusual monooxygenase catalyzing the first oxygenation step of Taxol biosynthesis. Chem Biol 11:379–387. DOI https://doi.org/10.1016/j.chembiol.2004.02.022

    CAS  PubMed  Google Scholar 

  • Jennewein S, Park H, DeJong JM, Long RM, Bollon AP, Croteau R (2005) Coexpression in yeast of Taxus cytochrome P450 reductase with cytochrome P450 oxygenases involved in Taxol biosynthesis. Biotechnol Bioeng 89:588–598. DOI https://doi.org/10.1002/bit.20390

    Google Scholar 

  • Ketchum REB, Tandon M, Begley TP, Gibson DM, Croteau R, Shuler ML (1997) The production of paclitaxel and other taxanes in Taxus canadensis suspension cell cultures elicited with methyl jasmonate. Plant Physiol 114:232–237

    Google Scholar 

  • Ketchum REB, Gibson DM, Croteau RB, Shuler ML (1999) The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate. Biotechnol Bioeng 62:97–105

    CAS  PubMed  Google Scholar 

  • Khosroushahi AY, Valizadeh M, Ghasempour A, Khosrowshahli M, Naghdibadi H, Dadpour MR, Omidi Y (2006) Improved Taxol production by combination of inducing factors in suspension cell culture of Taxus baccata. Cell Biol Int 30:262–269. DOI https://doi.org/10.1016/j.cellbi.2005.11.004

    CAS  PubMed  Google Scholar 

  • Kim SI, Choi HK, Kim, JH, Lee HS, Hong SS (2001) Effect of osmotic pressure on paclitaxel production in suspension cell cultures of Taxus chinensis. Enzyme Microb Technol 28:202–209. DOI https://doi.org/10.1016/S0141-0229(00)00292-1

    CAS  PubMed  Google Scholar 

  • Kim BJ, Gibson DM, Shuler ML (2004) Effect of subculture and elicitation on instability of Taxol production in Taxus sp. suspension cultures. Biotechnol Prog 20:1666–1673. DOI https://doi.org/10.1021/bp034274c

    CAS  PubMed  Google Scholar 

  • Kim BJ, Gibson DM, Shuler ML (2006) Effect of the plant peptide regulator, phytosulfokine-alpha, on the growth and Taxol production from Taxus sp. suspension cultures. Biotechnol Bioeng 95:8–14. DOI https://doi.org/10.1002/bit.20934

    CAS  PubMed  Google Scholar 

  • Loncaric C, Merriweather E, Walker KD (2006) Profiling a Taxol pathway 10β-acetyltransferase: assessment of the specificity and the production of baccatin III by in vivo acetylation in E. coli. Chem Biol 13:309–317. DOI https://doi.org/10.1016/j.chembiol.2006.01.006

    CAS  PubMed  Google Scholar 

  • Long RM, Croteau R (2005) Preliminary assessment of the C13-side chain 2′-hydroxylase involved in Taxol biosynthesis. Biochem Biophys Res Commun 338:410–417

    CAS  PubMed  Google Scholar 

  • Madhusudanan KP, Chattopadhyay SK, Tripathi V, Sashidhara KV, Kumar S (2002) MS/MS profiling of taxoids from the needles of Taxus wallichiana. Phytochem Anal 13:18–30. DOI https://doi.org/10.1002/pca.610

    Google Scholar 

  • Math SK, Hearst JE, Poulter CD (1992) The crtE gene in Erwinia herbicola encodes geranylgeranyl diphosphate synthase. Proc Natl Acad Sci USA 89:6761–6764. DOI https://doi.org/10.1073/pnas.89.15.6761

    CAS  Google Scholar 

  • Mirjalili N, Linden JC (1996) Methyl jasmonate induced production of Taxol in suspension cultures of Taxus cuspidata: ethylene interaction and induction models. Biotechnol Prog 12:110–118. DOI https://doi.org/10.1021/bp9500831

    CAS  PubMed  Google Scholar 

  • Mulabagal V, Tsay H-S (2004) Plant cell cultures—an alternative and efficient source for the production of biologically important secondary metabolites. Int J Appl Sci Eng 2:29–48

    Google Scholar 

  • Navia-Osorio A, Garden H, Cusido RM, Palazon J, Alfermann AW, Pinol MT (2002) Taxol® and baccatin III production in suspension cultures of Taxus baccata and Taxus wallichiana in an airlift bioreactor. J Plant Physiol 159:97–102. DOI https://doi.org/10.1078/0176-1617-00576

    CAS  Google Scholar 

  • Nguyen T, Eshraghi J, Gonyea G, Ream R, Smith R (2001) Studies on factors influencing stability and recovery of paclitaxel from suspension media and cultures of Taxus cuspidata cv Densiformis by high-performance liquid chromatography. J Chromatogr A 911:55–61. DOI https://doi.org/10.1016/S0021-9673(00)01272-3

    CAS  PubMed  Google Scholar 

  • Nims E, Dubois CP, Roberts SC, Walker EL (2006) Expression profiling of genes involved in paclitaxel biosynthesis for targeted metabolic engineering. Metab Eng 8:385–394. DOI https://doi.org/10.1016/j.ymben.2006.04.001

    CAS  PubMed  Google Scholar 

  • Patel RN (1998) Tour de paclitaxel: biocatalysis for semisynthesis. Annu Rev Microbiol 52:361–395. DOI https://doi.org/10.1146/annurev.micro.52.1.361

    CAS  PubMed  Google Scholar 

  • Patel RN (2004) Biocatalytic synthesis of chiral pharmaceutical intermediates. Food Technol Biotechnol 42:305–325

    CAS  Google Scholar 

  • Patel RN, Banerjee A, Nanduri VV (2000) Enzymatic acetylation of 10-deacetylbaccatin III to baccatin III by C-10 deacetylase from Nocardioides luteus SC 13913. Enzyme Microb Technol 27:371–375. DOI https://doi.org/10.1016/S0141-0229(00)00235-0

    CAS  PubMed  Google Scholar 

  • Pestchanker L, Roberts SC, Shuler ML (1996) Kinetics of Taxol production and nutrient use in suspension cultures of Taxus cuspidata in shake flasks and a Wilson-type bioreactor. Enzyme Microb Technol 19:256–260. DOI https://doi.org/10.1016/0141-0229(95)00243-X

    CAS  PubMed  Google Scholar 

  • Pflieger C, Frense D, Beckmann D, Lauckner G, Lisicki D, Hornbogen T, Zocher R, Becker M, Hensel J (2006) Membrane-supported extraction at enzymatic reactions in the presence of organic solvents. Chem Ing Tech 78:120–123. DOI https://doi.org/10.1002/cite.200500081

    Google Scholar 

  • Pyo SH, Choi HJ, Han BH (2006) Large-scale purification of 13-dehydroxybaccatin III and 10-deacetylpaclitaxel, semi-synthetic precursors of paclitaxel, from cell cultures of Taxus chinensis. J Chromatogr A 1123:15–21. DOI https://doi.org/10.1016/j.chroma.2006.04.093

    CAS  PubMed  Google Scholar 

  • Qian ZG, Zhao ZJ, Xu YF, Qian XH, Zhong JJ (2005) Highly efficient strategy for enhancing taxoid production by repeated elicitation with a newly synthesized jasmonate in fed-batch cultivation of Taxus chinensis cells. Biotechnol Bioeng 90:516–521. DOI https://doi.org/10.1002/bit.20460

    Google Scholar 

  • Reymond P, Bodenhausen N, van Poecke RMP, Krishnamurthy V, Dicke M, Farmer E (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147. DOI https://doi.org/10.1105/tpc.104.026120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts SC, Naill M, Gibson DM, Shuler ML (2003) A simple method for enhancing paclitaxel release from Taxus canadensis cell suspension cultures utilizing cell wall digesting enzymes. Plant Cell Rep 21:1217–1220. DOI https://doi.org/10.1007/s00299-003-0575-z

    CAS  PubMed  Google Scholar 

  • Roja G, Rao PS (2000) Anticancer compounds from tissue cultures of medicinal plant. J Herbs Spices Med Plants 7:71–102

    Google Scholar 

  • Schoendorf A, Rithner CD, Williams RM, Croteau R (2001) Molecular cloning of a cytochrome P450 taxane 10β-hydroxylase cDNA from Taxus and functional expression in yeast. Proc Natl Acad Sci USA 98:1501–1506. DOI https://doi.org/10.1073/pnas.98.4.1501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Son SH, Choi SM, Lee YH, Choi KB, Yun SR, Kim JK, Park HJ, Kwon OW, Noh EW, Seon JH, Park YG (2000) Large-scale growth and taxane production in cell cultures of Taxus cuspidata (Japanese yew) using a novel bioreactor. Plant Cell Rep 19:628–633. DOI https://doi.org/10.1007/s002990050784

    CAS  PubMed  Google Scholar 

  • Strobel G, Stierle A, Stierle D (1993) Taxomyces andreanae, a proposed new taxon for a Bulbilliferous hyphomycete associated with pacific yew (Taxus brevifolia). Mycotaxon 47:71–80

    Google Scholar 

  • Syklowska-Baranek K, Furmanowa M (2005) Taxane production in suspension culture of Taxus x media var. Hicksii carried out in flasks and bioreactor. Biotechnol Lett 27:1301–1304. DOI https://doi.org/10.1007/s10529-005-0223-5

    CAS  PubMed  Google Scholar 

  • Tabata H (2004) Paclitaxel production by plant-cell-culture technology. Adv Biochem Eng Biotechnol 87:1–23

    CAS  PubMed  Google Scholar 

  • Tabata H (2006) Production of paclitaxel and the related taxanes by cell suspension cultures of Taxus species. Curr Drug Targets 7:453–461

    CAS  PubMed  Google Scholar 

  • Walker K, Croteau R (2000a) Molecular cloning of a 10-deacetylbaccatin III-10-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Proc Nat Acad Sci USA 97:583–587. DOI https://doi.org/10.1073/pnas.97.2.583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker K, Croteau R (2000b) Taxol biosynthesis: molecular cloning of a benzoyl-CoA:taxane 2α-O-benzoyltransferase cDNA from Taxus and functional expression in Escherichia coli. Proc Natl Acad Sci USA 97:13591–13596. DOI https://doi.org/10.1073/pnas.250491997

    Google Scholar 

  • Walker K, Schoendorf A, Croteau R (2000c) Molecular cloning of a taxa-4(20), 11(12)-dien-5a-ol-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Arch Biochem Biophys 374:371–380. DOI https://doi.org/10.1006/abbi.1999.1609

    Google Scholar 

  • Walker K, Fujisaki S, Long R, Croteau R (2002a) Molecular cloning and heterologous expression of the C-13 phenylpropanoid side chain-CoA acyltransferase that functions in Taxol biosynthesis. Proc Nat Acad Sci USA 99:12715–12720. DOI https://doi.org/10.1073/pnas.192463699

    CAS  Google Scholar 

  • Walker K, Long R, Croteau R (2002b) The final acylation step in Taxol biosynthesis: cloning of the taxoid C13-side-chain N-benzoyltransferase from Taxus. Proc Natl Acad Sci USA 99:9166–9171. DOI https://doi.org/10.1073/pnas.082115799

    Google Scholar 

  • Walker K, Klettke K, Akiyama T, Croteau R (2004) Cloning, heterologous expression, and characterization of a phenylalanine aminomutase involved in taxol biosynthesis. J Biol Chem 279:53947–53954. DOI https://doi.org/10.1074/jbc.M411215200

    CAS  PubMed  Google Scholar 

  • Wang C, Wu J, Mei X (2001) Enhancement of Taxol production and excretion in Taxus chinensis cell culture by fungal elicitation and medium renewal. Appl Microbiol Biotechnol 55:404–410. DOI https://doi.org/10.1007/s002530000590

    CAS  PubMed  Google Scholar 

  • Wildung MR, Croteau R (1996) A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J Biol Chem 271:9201–9204

    CAS  PubMed  Google Scholar 

  • Wink M, Alfermann AW, Franke R, Wetterauer B, Distl M, Windhoevel J, Krohn O, Fuss E, Garden H, Mohagheghzadeh A, Wildi E, Ripplinger P (2005) Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents. Plant Gen Res 3:90–100

    CAS  Google Scholar 

  • Wu J, Lin L (2003) Enhancement of taxol production and release in Taxus chinensis cell cultures by ultrasound, methyl jasmonate and in situ solvent extraction. Appl Microbiol Biotechnol 62:151–155. DOI https://doi.org/10.1007/s00253-003-1340-5

    CAS  PubMed  Google Scholar 

  • Wu ZL, Yuan YJ, Liu JX, Xuan HY, Hu ZD, Sun AC, Hu CX (1999) Study on enhanced production of taxol from Taxus chinensis var. mairei in biphasic-liquid culture. Acta Bot Sin 41:1108–1113

    CAS  Google Scholar 

  • Yuan YJ, Wei ZJ, Wu ZL, Wu JC (2001) Improved Taxol production in suspension cultures of Taxus chinensis var. mairei by in situ extraction combined with precursor feeding and additional carbon source introduction in an airlift loop reactor. Biotechnol Lett 23:1659–1662. DOI https://doi.org/10.1023/A:1012483329863

    CAS  Google Scholar 

  • Yukimune Y, Tabata H, Higashi Y, Hara Y (1996) Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat Biotechnol 14:1129–1132

    CAS  PubMed  Google Scholar 

  • Zhang C, Fevereiro PS (2006) The effect of heat shock on paclitaxel production in Taxus yunnanensis cell suspension cultures: role of abscisic acid-pretreatment. Biotechnol Bioeng (in press). DOI https://doi.org/10.1002/bit.21122

    Google Scholar 

  • Zhang CH, Wu JY, He GY (2002) Effects of inoculum size and age on biomass growth and paclitaxel production of elicitor-treated Taxus yunnanensis cell cultures. Appl Microbiol Biotechnol 60:396–402. DOI https://doi.org/10.1007/s00253-002-1130-5

    Google Scholar 

  • Zhao K, Ping WX, Ma X, Liu J, Zhou DP (2005) Breeding of high-yield strain of taxol by mutagenesis of protoplast and primary discussion of genetic differences between mutants and their parent strain. Acta Microbiol Sin 45:355–358

    CAS  Google Scholar 

  • Zhong JJ (2002) Plant cell culture for production of paclitaxel and other taxanes. J Biosci Bioeng 94:591–599

    CAS  PubMed  Google Scholar 

  • Zhou DP, Ping XW (2001) Study on isolation of taxol-producing fungus. J Microbiol 21:18–20

    CAS  Google Scholar 

  • Zhou DP, Zhao K, Ping WX, Ge JP, Ma X, Jun L (2005) Study on the mutagensis of protoplasts from taxol-producing fungus Nodulisporium sylviforme. J Am Sci 1:55–62

    Google Scholar 

  • Zocher R, Weckwerth W, Hacker C, Kammer B, Hornbogen T (1996) Biosynthesis of taxol: Enzymatic acetylation of 10-deacetylbaccatin-III to baccatin-III in crude extracts from roots of Taxus baccata. Biochem Biophys Res Commun 229:16–20. DOI https://doi.org/10.1006/bbrc.1996.1751

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Frense.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frense, D. Taxanes: perspectives for biotechnological production. Appl Microbiol Biotechnol 73, 1233–1240 (2007). https://doi.org/10.1007/s00253-006-0711-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0711-0

Keywords

Navigation