Skip to main content
Log in

Metabolic pathways and biotechnological production of l-cysteine

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

l-Cysteine is an important amino acid both biologically and commercially. Although most amino acids are commercially produced by fermentation, cysteine is mainly produced by protein hydrolysis. However, synthetic or biotechnological products have been preferred in the market. Biotechnological processes for cysteine production, both enzymatic and fermentative processes, are discussed. Enzymatic process, the asymmetric hydrolysis of dl-2-amino-Δ2-thiazoline-4-carboxylic acid to l-cysteine, has been developed and industrialized. The l-cysteine biosynthetic pathways of Escherichia coli and Corynebacterium glutamicum, which are used in many amino acid production processes, are also described. These two bacteria have basically same l-cysteine biosynthetic pathways. l-Cysteine-degrading enzymes and l-cysteine-exporting proteins both in E. coli and C. glutamicum are also described. In conclusion, for the effective fermentative production of l-cysteine directly from glucose, the combination of enhancing biosynthetic activity, weakening the degradation pathway, and exploiting the export system seems to be effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ajinomoto (2002) Company statement. Available from World Wide Web http://www.foodnavigator.com/news/news.asp?id=43352. Cited 7 Jul 2006

  • Awano N, Wada M, Kohdoh A, Oikawa T, Takagi H, Nakamori S (2003) Effect of cysteine desulfhydrase gene disruption on l-cysteine overproduction in Escherichia coli. Appl Microbiol Biotechnol 62:239–243

    CAS  PubMed  Google Scholar 

  • Awano N, Wada M, Mori H, Nakamori S, Takagi H (2005) Identification and functional analysis of Escherichia coli cysteine desulfhydrases. Appl Environ Microbiol 71:4149–4152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berger EA, Heppel LA (1972) A binding protein involved in the transport of cysteine and diaminopimelic acid in Escherichia coli. J Biol Chem 247:7684–7694

    CAS  PubMed  Google Scholar 

  • Cicchillo RM, Baker MA, Schnitzer EJ, Newman EB, Krebs C, Booker SJ (2004) Escherichia coli l-serine deaminase requires a [4Fe-4S] cluster in catalysis. J Biol Chem 279:32418–32425

    CAS  PubMed  Google Scholar 

  • Daßler T, Maier T, Winterhalter C, Böck A (2000) Identification of a major facilitator protein from Escherichia coli involved in efflux of metabolites of the cysteine pathway. Mol Microbiol 36:1101–1112

    PubMed  Google Scholar 

  • Denk D, Böck A (1987) l-Cysteine biosynthesis in Escherichia coli: nucleotide sequence and expression of the serine acetyltransferase (cysE) gene from the wild-type and a cysteine-excreting mutant. J Gen Microbiol 133:515–525

    CAS  PubMed  Google Scholar 

  • Franke I, Resch A, Daßler T, Maier T, Böck A (2003) YfiK from Escherichia coli promotes export of O-acetylserine and cysteine. J Bacteriol 185:1161–1166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haitani Y, Awano N, Yamazaki M, Wada M, Nakamori S, Takagi H (2006) Functional analysis of l-serine O-acetyltransferase from Corynebacterium glutamicum. FEMS Microbiol Lett 255:156–163

    CAS  PubMed  Google Scholar 

  • Hardy PM (1985) The protein amino acids. In: Barrett GC (ed) Chemistry and biology of the amino acids. Chapman & Hall, London, pp 6–24

    Google Scholar 

  • Harris CL (1981) Cystine and growth inhibition of Escherichia coli: threonine deaminase as the target enzyme. J Bacteriol 145:1031–1035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hosie AHF, Poole PS (2001) Bacterial ABC transporters of amino acids. Res Microbiol 152:259–270

    CAS  PubMed  Google Scholar 

  • Hunt S (1985) Degradation of amino acids accompanying in vitro protein hydrolysis. In: Barrett GC (ed) Chemistry and biology of the amino acids. Chapman & Hall, London, pp 376–398

    Google Scholar 

  • Ikeda M (2003) Amino acid production process. In: Scheper T, Faurie R, Thommel J (eds) Advances in biochemical engineering/biotechnology, vol. 79. Springer, Berlin Heidelberg New York, pp 1–35

    Google Scholar 

  • Kai Y, Kashiwagi T, Ishikawa K, Ziyatdinov MK, Redkina EI, Kiriukhin MY, Gusyatiner MM, Kobayashi S, Takagi H. Suzuki E (2006) Engineering of Escherichia coli l-serine O-acetyltransferase on the basis of crystal structure: desensitization to feedback inhibition by l-cysteine. Protein Eng Des Sel 19:163–167

    CAS  PubMed  Google Scholar 

  • Kim JW, Kim HJ, Kim Y, Lee MS, Lee HS (2001) Properties of the Corynebacterium glutamicum metC gene product encoding cystathionine β-lyase. Mol Cells 11:220–225

    CAS  PubMed  Google Scholar 

  • Kobayashi S, Masui R, Yokoyama S, Kuramitsu S, Takagi H (2004) A novel metal-activated l-serine O-acetyltransferase from Thermus thermophilus HB8. J Biochem 136:629–634

    CAS  PubMed  Google Scholar 

  • Krämer R (1994) Systems and mechanism of amino acid uptake and excretion in prokaryotes. Arch Microbiol 162:1–13

    Google Scholar 

  • Kredich NM (1996) Biosynthesis of cysteine, In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznicoff WS, Riley M, Schaechter M, Umbarger JE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, 2nd edn. ASM, Washington DC, pp 514–527

    Google Scholar 

  • Kredich NM, Tomkins GM (1966) The enzymatic synthesis of l-cysteine in Escherichia coli and Salmonella typhimurium. J Biol Chem 241:4955–4965

    CAS  PubMed  Google Scholar 

  • Lee HS, Hwang BJ (2003) Methionine biosynthesis and its regulation in Corynebacterium glutamicum: parallel pathways of transsulfuration and direct sulfhydrylation. Appl Microbiol Biotechnol 62:459–467

    CAS  PubMed  Google Scholar 

  • Leinfelder W, Heinrich P (1997) Process for preparing O-acetylserine, l-cysteine and l-cysteine-related products. German patent number WO 97/15673

  • Leuchtenberger W (1996) Amino acids-technical production and use. In: Roehr M (ed) Biotechnology, vol. 6. VCH, Weinheim, pp 465–502

    Google Scholar 

  • Nakamori S, Kobayashi S, Kobayashi C, Takagi H (1998) Overproduction of l-cysteine and l-cystine by Escherichia coli strains with a genetically altered serine acetyltransferase. Appl Environ Microbiol 64:1607–1611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishino K, Yamaguchi A (2001) Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 183:5803–5812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noji M, Inoue K, Kimura N, Gouda A, Saito K (1998) Isoform-dependent differences in feedback regulation and subcellular localization of serine acetyltransferase involved in cysteine biosynthesis from Arabidopsis thaliana. J Biol Chem 273:32739–32745

    CAS  PubMed  Google Scholar 

  • Ohmachi T, Nishino M, Kawata M, Edo N, Funaki H, Narita M, Mori K, Tamura Y, Asada Y (2002) Identification, cloning, and sequencing of the genes involved in the conversion of d,l-2-amino-Δ2-thiazoline-4-carboxylic acid to l-cysteine in Pseudomonas sp. strain ON-4a. Biosci Biotechnol Biochem 66:1097–1104

    CAS  PubMed  Google Scholar 

  • Ono B, Hazu T, Yoshida S, Kawato T, Shinoda S, Brzvwczy J. Paszewski A (1999) Cysteine biosynthesis in Saccharomyces cerevisiae: a new outlook on pathway and regulation. Yeast 15:1365–1375

    CAS  PubMed  Google Scholar 

  • Peter-Wendisch P, Stolz M, Etterich H, Kennerknecht N, Sahm H, Eggeling L (2005) Metabolic engineering of Corynebacterium glutamicum for l-serine production. Appl Environ Microbiol 71:7139–7144

    Google Scholar 

  • Pittman MS, Corker H, Wu G, Binet MB, Moir AJG, Poole RK (2002) Cysteine is exported from the Escherichia coli cytoplasm by CydDC, an ATP-binding cassette-type transporter required for cytochrome assembly. J Biol Chem 277:49841–49849

    CAS  PubMed  Google Scholar 

  • Pizer LI (1963) The pathway and control of serine biosynthesis in Escherichia coli. J Biol Chem 238:3934–3944

    CAS  PubMed  Google Scholar 

  • Pye VE, Tingey AP, Robson RL, Moody PCE (2004) The structure and mechanism of serine acetyltransferase from Escherichia coli. J Biol Chem 279:40729–40736

    CAS  PubMed  Google Scholar 

  • Rossol I, Pühler A (1992) The Corynebacterium glutamicum aecD gene encodes a C-S lyase with α,β-elimination activity that degrades aminoethylcysteine. J Bacteriol 174:2968–2977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu OH, Ju JY, Shin CS (1997) Continuous l-cysteine production using immobilized cell reactors and product extractors. Process Biochem 32:201–209

    CAS  Google Scholar 

  • Sano K, Mitsugi K (1978) Enzymatic production of l-cysteine from dl-2-amino-Δ2-thiazoline-4-carboxylic acid by Pseudomonas thiazolinophium: optimal conditions for the enzyme formation and enzymatic reaction. Agric Biol Chem 42:2315–2321

    CAS  Google Scholar 

  • Sano K, Eguchi C, Yasuda N, Mitsugi K (1979) Metabolic pathway for l-cysteine formation from dl-2-amino-Δ2-thiazoline-4-carboxylic acid by Pseudomonas. Agric Biol Chem 43:2373–2374

    CAS  Google Scholar 

  • Shiba T, Takeda K, Yajima M, Tadano M (2002) Genes from Pseudomonas sp. strain BS involved in the conversion of l-2-amino-Δ2-thiazolin-4-carbonic acid to l-cysteine. Appl Environ Microbiol 68:2179–2187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soda K (1987) Microbial sulfur amino acids: an overview. In: Jakoby WB, Griffith OW (eds) Methods in enzymology, vol.143. Academic Press, Orlando, pp 453–459

    Google Scholar 

  • Sørensen MA, Pederson S (1991) Cysteine even in low concentrations, induces transient amino acid starvation in Escherichia coli. J Bacteriol 173:5244–5246

    PubMed  PubMed Central  Google Scholar 

  • Sperandio B, Polard P, Ehrlich DS, Renault P, Guédon E (2005) Sulfur amino acid metabolism and its control in Lactococcus lactis IL1403. J Bacteriol 187:3762–3778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto E, Pizer LI (1968) The mechanism of end product inhibition of serine biosynthesis. I. Purification and kinetics of phosphoglycerate dehydrogenase. J Biol Chem 243:2081–2089

    CAS  PubMed  Google Scholar 

  • Takagi H, Kobayashi C, Kobayashi S, Nakamori S (1999a) PCR random mutagenesis into Escherichia coli serine acetyltransferase: isolation of the mutant enzymes that cause overproduction of l-cysteine and l-cystine due to the desensitization to feedback inhibition. FEBS Lett 452:323–327

    CAS  PubMed  Google Scholar 

  • Takagi H, Awano N, Kobayashi S, Noji M, Saito K, Nakamori S (1999b) Overproduction of l-cysteine and l-cystine by expression of genes for feedback inhibition-insensitive serine acetyltransferase from Arabidopsis thaliana in Escherichia coli. FEMS Microbiol Lett 179:453–459

    CAS  PubMed  Google Scholar 

  • Takagi H, Yoshioka K, Awano N, Nakamori S, Ono B (2003) Role of Saccharomyces cerevisiae serine O-acetyltransferase in cysteine biosynthesis. FEMS Microbiol Lett 218:291–297

    CAS  PubMed  Google Scholar 

  • Tamura T, Nishino M, Ohmachi T, Asada Y (1998) N-Carbamoyl-l-cysteine as an intermediate in the bioconversion from d,l-2-amino-Δ2-thiazoline-4-carboxylic acid to l-cysteine by Pseudomonas sp. ON-4a. Biosci Biotechnol Biochem 62:2226–2229

    CAS  PubMed  Google Scholar 

  • Vermeji P, Kertesz MA (1999) Pathways of assimilative sulfur metabolism in Pseudomonas putida. J Bacteriol 181:5833–5837

    Google Scholar 

  • Viljic M, Sahm H, Eggeling L (1996) A new type of transporter with a new type of cellular function: l-lysine export from Corynebacterium glutamicum. Mol Microbiol 22:815–826

    Google Scholar 

  • Wada M, Awano N, Haisa K, Takagi H, Nakamori S (2002) Purification, characterization and identification of cysteine desulfhydrase of Corynebacterium glutamicum, and its relationship to cysteine production. FEMS Microbiol Lett 217:103–107

    CAS  PubMed  Google Scholar 

  • Wada M, Awano N, Yamazawa H, Takagi H, Nakamori S (2004) Purification and characterization of O-acetylserine sulfhydrylase of Corynebacterium glutamicum. Biosci Biotechnol Biochem 68:1581–1583

    CAS  PubMed  Google Scholar 

  • Wheeler PR, Coldham NG, Keating L, Gordon SV, Wooff EE, Parish T, Hewinson RG (2005) Functional demonstration of reverse transsulfuration in the Mycobacterium tuberculosis complex reveals that methionine is the preferred sulfur source for pathogenic Mycobacteria. J Biol Chem 280:8069–8078

    CAS  PubMed  Google Scholar 

  • Wirtz M, Hell R (2003) Production of cysteine for bacterial and plant biotechnology: application of cysteine feedback-insensitive isoforms of serine acetyltransferase. Amino Acids 24:195–203

    CAS  PubMed  Google Scholar 

  • Yamada S, Awano N, Inubushi K, Maeda E, Nakamori S, Nishino K, Yamaguchi A, Takagi H (2006) Effect of drug transporter genes on cysteine export and overproduction in Escherichia coli. Appl Environ Microbiol 72:4735–4742

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported in part by a grant from Ajinomoto, Co., Inc., to H.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Wada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wada, M., Takagi, H. Metabolic pathways and biotechnological production of l-cysteine. Appl Microbiol Biotechnol 73, 48–54 (2006). https://doi.org/10.1007/s00253-006-0587-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0587-z

Keywords

Navigation