Skip to main content
Log in

Regulation of avilamycin biosynthesis in Streptomyces viridochromogenes: effects of glucose, ammonium ion, and inorganic phosphate

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Effects of glucose, ammonium ions and phosphate on avilamycin biosynthesis in Streptomyces viridochromogenes AS4.126 were investigated. Twenty grams per liter of glucose, 10 mmol/L ammonium ions, and 10 mmol/L phosphate in the basal medium stimulated avilamycin biosynthesis. When the concentrations of glucose, ammonium ions, and phosphate in the basal medium exceeded 20 g/L, 10 mmol/L, and 10 mmol/L, respectively, avilamycin biosynthesis greatly decreased. When 20 g/L glucose was added at 32 h, avilamycin yield decreased by 70.2%. Avilamycin biosynthesis hardly continued when 2-deoxy-glucose was added into the basal medium at 32 h. There was little influence on avilamycin biosynthesis with the addition of the 3-methyl-glucose (20 g/L) at 32 h. In the presence of excess (NH4)2SO4 (20 mmol/L), the activities of valine dehydrogenase and glucose-6-phosphate dehydrogenase were depressed 47.7 and 58.3%, respectively, of that of the control at 48 h. The activity of succinate dehydrogenase increased 49.5% compared to the control at 48 h. The intracellular adenosine triphosphate level and 6-phosphate glucose content of S. viridochromogenes were 128 and 129%, respectively, of that of the control at 48 h, with the addition of the 40 mmol/L of KH2PO4. As a result, high concentrations of glucose, ammonium ions, and inorganic phosphate all led to the absence of the precursors for avilamycin biosynthesis and affected antibiotic synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Buzzetti F, Eisenberg F, Grant HN et al (1968) Avilamycin. Experientia 24:320–324

    CAS  PubMed  Google Scholar 

  • Cao FX (2003) The technology of the secondary production and secondary metabolism. National University of Defense Technology Press, Beijing, China

    Google Scholar 

  • Chauvin CM, Gicquel BA, Perrin GF et al (2005) Use of avilamycin for growth promotion and avilamycin-resistance among Enterococcus faecium from broilers in a matched case-control study in France. Prev Vet Med 70:155–163

    CAS  PubMed  Google Scholar 

  • Chen GB, Zhang JY, Niu JY et al (2003) Studies on regulation of antibiotic AGPM biosynthesis. Chem J Chin Univ 17:521–525

    CAS  Google Scholar 

  • Chu J, Li YR (2002) Modern industrial fermentation regulation. Chemical Industry Press, Beijing, China

    Google Scholar 

  • Du LX, Lu FP (1992) Industrial microbiology experiment technique. Tianjin Science and Technology Press, Tianjin, China

    Google Scholar 

  • Fabrizio B, Srdjan J, Marina F et al (2004) Valine influences production and complex composition of glycopeptide antibiotic A40926 in fermentations of Nonomuraea sp. ATCC 39727. J Antibiot 57:37–44

    Google Scholar 

  • Gaisser S, Trefzer A, Sigrid S et al (1997) Cloning of an avilamycin biosynthetic gene cluster from Streptomyces viridochromogenes Tü57. J Bacteriol 179:6271–6278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann C, Boll R, Heitmann B et al (2005) Genes encoding enzymes responsible for biosynthesis of L-Lyxose and attachment of Eurekanate during avilamycin biosynthesis. Chem Biol 12:1137–1143

    CAS  PubMed  Google Scholar 

  • Hulya AK, Tarhan L (2006) Vancomycin antibiotic production and TCA-glyoxalate pathways depending on the glucose concentration in Amycolatopsis orientalis. Enzyme Microb Technol 38:727–734

    Google Scholar 

  • Hyun CG, Kim SS, Park KH et al (2000) Valine dehydrogenase from Streptomyces albus: gene cloning, heterologous expression and identification of active site by site-directed mutagenesis. FEMS Microbiol Lett 182:29–34

    CAS  PubMed  Google Scholar 

  • Irschik H, Reichenbach H (1985) An unusual pattern of carbonhydrate utilization in corallococcus (Myxococcus) coralloides (Myxobacterales). Arch Microbiol 142:40

    CAS  Google Scholar 

  • Juan FM (2004) Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR–PhoP system: an unfinished story. J Bacteriol 186:5197–5201

    Google Scholar 

  • Juan FM, Arnold LD (1980) Control of antibiotic biosynthesis. Microbiol Rev 44:230–251

    Google Scholar 

  • Keqian Y, Lei H, Leo CV (1995) Regulation of jadomycin B production in Streptomyces venezuelae ISP5230: involvement of a repressor gene, jadR2. J Bacteriol 177:6111–6117

    Google Scholar 

  • Kuby SA, Noltmann EA (1966) Methods in enzymology, vol 9. Academic, New York, pp 116–125

    Google Scholar 

  • Lebrihi A, Lamsaif D, Lefebvre G et al (1992) Effect of ammonium ions on spiramycin biosynthesis in Streptomyces ambofaciens. Appl Microbiol Biotechnol 37:382–387

    CAS  PubMed  Google Scholar 

  • Levine S, Gregory C, Nguyen T et al (2002) Bioenergetic adaptation of individual human diaphragmatic myofibers to severe COPD. J Appl Physiol 92:1205–1213

    PubMed  Google Scholar 

  • Li T, Zhang YX, Hutechinson CR (1994) Amino acid catabolism and antibiotic synthesis: valine is a source of precursors for macrolide biosynthesis in Streptomyces ambofaciens and Streptomyces fradiae. J Bacteriol 176:6107–6119

    Google Scholar 

  • Lounes A, Lebrihi A, Benslimane C et al (1995) Regulation of valine catabolism by ammonium in Streptomyces ambofaciens, producer of spiramycin. Can J Microbiol 41:800–808

    CAS  PubMed  Google Scholar 

  • Lounes A, Lebrihi A, Benslimane C et al (1996) Regulation of spiramycin synthesis in Streptomyces ambofaciens: effects of glucose and inorganic phosphate. Appl Microbiol Biotechnol 45:204–211

    CAS  PubMed  Google Scholar 

  • Mardy N, Sprinkmeyer R (1979) Regulation of tylosin synthesis in Streptomeces: effect of glucose analogs and inorganic phosphate. Eur J Appl Microbiol Biotechnol 7:365–370

    Google Scholar 

  • Mosbacher G, Bechthold A, Schulz E (2005) Structure and function of the antibiotic resistance-mediating Methyltransferase AviRb from Streptomyces viridochromogenes. J Mol Biol 345:535–545

    CAS  PubMed  Google Scholar 

  • Nigel D, John A (1989) Purification and catalytic properties of L-valine dehydrogenase from Streptomyces cinnamonensis. Biochem J 261:853–861

    Google Scholar 

  • Noriteru M, Kenji I, Koichi O et al (2004) Exposure to pressure stimulus enhances succinate dehydrogenase activity in L6 myoblasts. Am J Physiol Endocrinol Metabol Gastrointest Physiol 287:1064–1069

    Google Scholar 

  • Novak J, Hajek P, Rezanka T et al (1992) Nitrogen regulation of fatty acids and avermectins biosynthesis in Streptomyces avermitilis. FEMS Microbiol Lett 93:57–61

    CAS  Google Scholar 

  • Omura S, Tsuzuki KY, Tanaka H et al (1983) Valine as a precursor of the n-butyrate unit in the biosynthesis of macrolide aglycones. J Antibiot 36:614–616

    CAS  PubMed  Google Scholar 

  • Omura S, Tanaka Y, Mamada R et al (1984a) Effect of ammonium ion, inorganic phosphate and amino acids on the biosynthesis of protylonolide, a precursor of tylosin aglycone. J Antibiot 37:494–502

    CAS  PubMed  Google Scholar 

  • Omura S, Tanaka Y, Mamada R et al (1984b) Ammonium ion suppress the amino acid metabolism involved in the biosynthesis of protylonolide in a mutant of Streptomyces fradiae. J Antibiot 37:1362–1369

    CAS  PubMed  Google Scholar 

  • Orduna RM, Theobald U (2000) Intracellular glucose 6-phosphate content in Streptomyces coelicolor upon environmental changes in a defined medium. J Biotechnol 77:209–218

    Google Scholar 

  • Saier MH Jr (1998) Multiple mechanisms controlling carbon metabolism in bacteria. Biotechnol Bioeng 58:170–174

    CAS  PubMed  Google Scholar 

  • Shikha D, Rup L, Manjit H et al (2005) Effect of antibiotics on growth and laccase production from Cyathus bulleri and Pycnoporus cinnabarinus. Bioresour Technol 96:1415–1418

    Google Scholar 

  • Treede I, Hauser G, Mühlenweg A et al (2005) Genes involved in formation and attachment of a two-carbon chain as a component of Eurekanate, a branched-chain sugar moiety of avilamycin A. Appl Environ Microbiol 71:400–406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JY, Zhu SK, Xu ZF (2002) Biochemistry, 3rd edn. Higher Education Press, Beijing, China

    Google Scholar 

  • Wang P, Zhu YP, Chu J et al (2005) Regulatory effects of ammonium ions on the biosynthesis of meilingmycin. Acta Microbiol Sin 45:405–409

    CAS  Google Scholar 

  • Weitnauer G, Gaisser S, Trefzer A et al (2001a) An ATP-binding cassette transporter and two rRNA methyltransferases are involved in resistance to avilamycin in the producer organism Streptomyces viridochromogenes Tü57. Antimicrob Agents Chemother 45:690–695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weitnauer G, Mühlenweg A, Trefzer A et al (2001b) Biosynthesis of the orthosomycin antibiotic avilamycin A: deductions from the molecular analysis of the avi biosynthetic gene cluster of Streptomyces viridochromogenes Tü57 and production of new antibiotics. Chem Biol 8:569–581

    CAS  PubMed  Google Scholar 

  • Weitnauer G, Gaisser S, Kellenberger L et al (2002) Analysis of a C-methyltransferase gene (aviG1) involved in avilamycin biosynthesis in Streptomyces viridochromogenes Tü57 and complementation of a Saccharopolyspora erythraea eryBIII mutant by aviG1. Microbiology 148:373–379

    CAS  PubMed  Google Scholar 

  • Wright ED (1979) The orthosomycins, a new family of antibiotics. Tetrahedron 35:1207–1236

    CAS  Google Scholar 

  • Xu CD, Yi WY, Quan WH (1998) Approach of phenol-hypochlorite reaction for determination of ammonia. J Wuxi Univ Light Ind 17:34–38

    Google Scholar 

  • Yuan YS, Zhu WH, Chen JH (1995) Biochemical experiments. Advanced Education Press, Beijing, China

    Google Scholar 

  • Zhang XY (2000) The determination of avilamycin premix. J China Vet 35:21–23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-ping Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Ch., Lu, Fp., He, Yn. et al. Regulation of avilamycin biosynthesis in Streptomyces viridochromogenes: effects of glucose, ammonium ion, and inorganic phosphate. Appl Microbiol Biotechnol 73, 1031–1038 (2007). https://doi.org/10.1007/s00253-006-0572-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0572-6

Keywords

Navigation