Skip to main content
Log in

Biosynthesis of amylase inhibitor by Streptomycete cultures

  • Producers, Biology, Selection, and Gene Engineering
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

We studied the effects of different sources of carbon, nitrogen, and dietary elements on the biosynthesis of amylase inhibitor produced by two strains from the Russian National Collection of Industrial Microorganisms: Streptomyces violaceus (code: Ac-1734) and Streptomyces lucensis (Ac-1743). We found that the biosynthesis of amylase inhibitor can be regulated by limiting carbon and oxygen concentrations, maintaining constant a C: N ratio and a stable proportion of carbohydrates (dextrins, maltose and glucose) in the medium, and by adding an extra organic source of nitrogen to the medium. The inhibitors produced by the cultures are pseudo-polysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

amylolytic activity

IU:

inhibitory unit

CMC:

carboxymethylcellulolytic activity

MW:

molecular weight

DE:

dextrose equivalent

References

  1. Chen, X., Zheng, Y., and Shen, Y., Voglibose (Basen, AO-128), one of the most important alpha-glucosidase inhibitors, Curr. Med. Chem., 2006, vol. 13, no. 1, pp. 109–116.

    Article  CAS  PubMed  Google Scholar 

  2. Wang, H., Ni, Y., Yang, S., Li, H., Li, X., and Feng, B., The effects of gliclazide, metformin, and acarbose on body composition in patients with newly diagnosed type 2 diabetes mellitutus, Curr. Ther. Res. Clin. Exp., 2013, no. 75, pp. 88–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scott, L.J. and Spencer, C.M., Miglitol: a review of its therapeutic potential in type 2 diabetes mellitus, Drugs, 2000, vol. 59, no. 3, pp. 521–549.

    Article  CAS  PubMed  Google Scholar 

  4. Frommer V., Pulse, V., and Schmidt, D., A method for producing amylase inhibitor, DE Patent no. 504502, 1976.

    Google Scholar 

  5. Sharova, N.Yu., Pozdnyakova, T.A., and Khodkevich, O.A., The actinomycete Streptomyces lucensis strain producing glycosidase inhibitor, RF Patent no. 2355755, 2009.

    Google Scholar 

  6. Sharova, N.Yu., Nikiforova, T.A., and Pozdnyakova, T.A., The actinomycete Streptomyces violaceus strain producing glycosidase inhibitor, RF Patent no. 2346042, 2009.

    Google Scholar 

  7. Sharova, N.Yu., Kamen’kova, N.V., and Khodkevich, O.A., New enzyme formulations for preparing destructured rye grain for fermentation to citric acid, Khranenie i pererab. sel’khozsyr’ya, 2012, no. 6, pp. 37–39.

    Google Scholar 

  8. Tregubov, N.N. and Kostenko, V.G., Tekhnokhimicheskii kontrol’ krakhmalopatochnogo proizvodstva (Technical and Chemical Control of Starch and Molasses Production), Moscow: Agropromizdat, 1991.

    Google Scholar 

  9. Sharova, N.Yu., Amylase inhibitors from Streptomyces lucensis VKPM Ac-1743 and Streptomyces violaceus VKPM Ac-1734, Appl. Biochem. Microbiol., 2015, vol. 51, no. 1, pp. 58–63.

    Article  CAS  Google Scholar 

  10. Chukhchin, D.G. and Tupin, P.A., A method for quantitative determination of dehydrogenase activity of microorganisms, RF Patent no. 2476598, 2006.

    Google Scholar 

  11. Xiao, Z., Storms, R., and Tsang, A., A quantitative starch-iodine method for measuring alpha-amylase and glucoamylase activities, Anal. Biochem., 2006, vol. 351, no. 1, pp. 146–148.

    Article  CAS  PubMed  Google Scholar 

  12. Akulova, N.Yu. and Selezneva, A.A., Microbial inhibitors of α-glucosidases of a pseudosaccharide nature, Prikl. Biokhim. Mikrobiol., 1995, vol. 31, no. 4, pp. 371–380.

    CAS  Google Scholar 

  13. Kolodjaznaja, V.A. and Jakovleva, E.P., Stabilization of α-glucosidase inhibitor (an antidiabetic drug gipoglugine) producer inoculum, in Biotechnology and Industry, New York: Nova Science Publishers, 2004, pp. 371–380.

    Google Scholar 

  14. Yamagishi, T., Uchida, C., and Ogawa, S., Total synthesis of the trehalase inhibitor salbostatin, Chem. Eur. J., 2006, vol. 1, no. 9, pp. 634–636.

    Article  Google Scholar 

  15. Vertesy, L., Oeding, V., and Bender, R., Tendamistat (HOE 467), a tight-binding α-amylase inhibitor from Streptomyces tendae 4158, Eur. J. Biochem., 2004, vol. 141, no. 3, pp. 505–512.

    Article  Google Scholar 

  16. Kalakutskii, L.V. and Agre, N.S., Razvitie aktinomitsetov (Development of Actinomycetes), Moscow: Nauka, 1977.

    Google Scholar 

  17. Wehmeier, U.F., The biosynthesis and metabolism of acarbose in Actinoplanes sp. SE 50/110: a progress report, Biocat. Biotransform., 2003, vol. 21, nos. 4–5, pp. 279–284.

    Article  CAS  Google Scholar 

  18. Jokose, K., Ogawa, K., and Ano, T., New α-amylase inhibitor trestatin I. Isolation, characterisation and biological activities of trestatins A, B and C, J. Antibioticus, 1983, no. 36, pp. 1157–1165.

    Article  Google Scholar 

  19. Bonsch, R., Hohmann, K., Kuhn, J., Cerny, V., Hotek, F., and Pendl, J., Verfahren zur Herstellung von Citronensaure und/oder Citraten, DE Patent Appl. no. 19747902, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Sharova.

Additional information

Original Russian Text © N.Yu. Sharova, 2015, published in Biotekhnologiya, 2015, No. 5, pp. 22–33.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharova, N.Y. Biosynthesis of amylase inhibitor by Streptomycete cultures. Appl Biochem Microbiol 52, 723–732 (2016). https://doi.org/10.1134/S000368381608007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368381608007X

Keywords

Navigation