Skip to main content
Log in

Metabolic activity of Corynebacterium glutamicum grown on l-lactic acid under stress

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Respiration measurement in shake flasks is introduced as a new method to characterize the metabolic activity of microorganisms during and after stress exposure. The major advantage of the new method is the possibility to determine the metabolic activity independent of manual sampling without the necessity to change the culture vessel or the cultivation medium. This excludes stress factors, which may be induced by transferring the microorganisms to plates or respirometers. The negative influence, which interruptions of the shaker during sampling times may have on the growth of microorganisms was demonstrated. The applicability of the method was verified by characterizing the behavior of Corynebacterium glutamicum grown on the carbon source l-lactic acid under stress factors such as carbon starvation, anaerobic conditions, lactic acid, osmolarity, and pH. The following conditions had no effect on the metabolic activity of C. glutamicum: a carbon starvation of up to 19 h, anaerobic conditions, lactic acid concentrations up to 10 g/l, 3-(N-morpholino) propanesulfonic acid buffer concentrations up to 42 g/l, or pH from 6.4 to 7.4. Lactic-acid concentrations from 10 to 30 g/l lead to a decrease of the growth rate and the biomass substrate yield without effecting the oxygen substrate conversion. Without adaptation, the organism did not grow at pH≤5 or ≥9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderlei T, Büchs J (2000) Device for sterile online measurement of the oxygen transfer rate in shaking flasks. Biochem Eng J 7:157–162

    Article  Google Scholar 

  • Anderlei T, Zang W, Papaspyrou M, Büchs J (2004) Online respiration activity measurement (OTR, CTR, RQ) in shake flasks. Biochem Eng J 17:187–194

    Article  CAS  Google Scholar 

  • Barreiro C, González-Lavado E, Pátek M, Martín J-F (2004) Transcriptional analysis of the groES-groEL1, groEL2, and dnaK genes in Corynebacterium glutamicum: characterization of heat shock-induced promoters. J Bacteriol 186:4813–4817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barreiro C, González-Lavado E, Brand S, Tauch A, Martín J-F (2005) Heat shock proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking groEL1, a dispensable chaperone. J Bacteriol 187:884–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodmer T, Miltner E, Bermudez LE (2000) Mycobacterium avium resists exposure to the acidic conditions of the stomach. FEMS Microbiol Lett 182:45–49

    Article  CAS  PubMed  Google Scholar 

  • Breidt F Jr, Hayes JS, McFeeters RF (2004) Independent effects of acetic acid and pH on survival of Escherichia coli in simulated acidified pickle products. J Food Prot 67:12–18

    Article  CAS  PubMed  Google Scholar 

  • Bröer S, Krämer R (1991) Lysine excretion by Corynebacterium glutamicum 1. Identification of a specific secretion carrier system. Eur J Biochem 202:131–135

    Article  PubMed  Google Scholar 

  • Burkovski A (2003) I do it my way: regulation of ammonium uptake and ammonium assimilation in Corynebacterium glutamicum. Arch Microbiol 179:83–88

    Article  CAS  PubMed  Google Scholar 

  • Cocaign-Bousquet M, Lindley ND (1995) Pyruvate overflow and carbon flux within the central metabolic pathways of Corynebacterium glutamicum during growth on lactate. Enzyme Microb Technol 17:260–267

    Article  CAS  Google Scholar 

  • Cocaign M, Monnet C, Lindley ND (1993) Batch kinetics of Corynebacterium glutamicum during growth on various carbon substrates: use of mixtures to localize metabolic bottlenecks. Appl Microbiol Biotechnol 40:526–530

    Article  CAS  Google Scholar 

  • Cotter PD, Hill C (2003) Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67:429–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira A, O’Byrne CP, Boor KJ (2001) Role of σB in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in Listeria monocytogenes. Appl Environ Microbiol 67:4454–4457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gourdon P, Baucher M-F, Lindley ND, Guyonvarch A (2000) Cloning the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism. Appl Environ Microbiol 66:2981–2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillouet S, Engasser JM (1995) Growth of Corynebacterium glutamicum in glucose-limited continuous cultures under high osmotic pressure. Influence of growth rate on the intracellular accumulation of proline, glutamate, and trehalose. Appl Microbiol Biotechnol 44:496–500

    Article  CAS  Google Scholar 

  • Guillouet S, Engasser JM (1996) Growth of Corynebacterium glutamicum in ammonium- and potassium-limited continuous cultures under high osmotic pressure. Appl Microbiol Biotechnol 46:291–296

    Article  CAS  Google Scholar 

  • Gutmann M, Hoischen C, Krämer R (1992) Carrier-mediated glutamate secretion by Corynebacterium glutamicum under biotin limitation. Biochim Biophys Acta 1112:115–123

    Article  CAS  PubMed  Google Scholar 

  • Gruber TM, Bryant DA (1997) Molecular systematic studies of eubacteria, using σ70-type sigma factors of group 1 and group 2. J Bacteriol 179:1734–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houtsma PC, Kant-Muermans ML, Rombouts FM, Zwietering MH (1996) Model for the combined effects of temperature, pH, and sodium lactate on growth rates of Listeria innocua in broth and bologna-type sausages. Appl Environ Microbiol 62:1616–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Coates ARM (1999) Transcription of two sigma 70 homologue genes, sigA and sigB, in stationary-phase Mycobacterium tuberculosis. J Bacteriol 81:469–476

    Article  Google Scholar 

  • Ihssen J, Egli T (2004) Specific growth rate and not cell density controls the general stress response in Escherichia coli. Microbiology 150:1637–1648

    Article  CAS  PubMed  Google Scholar 

  • Inui M, Muratami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H (2004) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196

    Article  CAS  PubMed  Google Scholar 

  • Ishige T, Krause M, Bott M, Wendisch VF, Sahm H (2003) The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J Bacteriol 185:4519–4529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T-H, Park J-S, Kim H-J, Kim Y, Kim P, Lee H-S (2005) The whcE gene of Corynebacterium glutamicum is important for survival following heat and oxidative stress. Biochem Biophys Res Commun 337:757–764

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita S, Udaka S, Shimono M (1957) Amino acid fermentation. I. Production of l-glutamic acid by various microorganisms. J Gen Appl Microbiol 3:193–205

    Article  CAS  Google Scholar 

  • Koan M, Schaffer S, Ishige T, Sorger-Hermann U, Wendisch VF, Bott M (2006) Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS–PhoR system in the phosphate starvation response. J Bacteriol 188:724–732

    Article  CAS  Google Scholar 

  • Koffas MAG, Jung GY, Stephanopoulos G (2003) Engineering metabolism and product formation in Corynebacterium glutamicum by coordinated gene overexpression. Metab Eng 5:32–41

    Article  CAS  PubMed  Google Scholar 

  • Losen M, Lingen B, Pohl M, Büchs J (2004) Effect of oxygen-limitation and medium composition on Escherichia coli in small-scale cultures. Biotechnol Prog 20:1062–1068

    Article  CAS  PubMed  Google Scholar 

  • Maier U, Büchs J (2001) Characterisation of the gas–liquid mass transfer in shaking bioreactors. Biochem Eng J 7:99–106

    Article  CAS  PubMed  Google Scholar 

  • Maier U, Losen M, Büchs J (2004) Advances in understanding and modeling the gas–liquid mass transfer in shake flasks. Biochem Eng J 17:155–167

    Article  CAS  Google Scholar 

  • Mandel MJ, Silhavy TJ (2005) Starvation for different nutrients in Escherichia coli results in differential modulation of RpoS levels and stability. J Bacteriol 187:434–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mrotzek C, Andertei T, Henzler H-J, Büchs J (2001) Mass transfer resistance of sterile plugs in shaking bioreactors. Biochem Eng J 7:107–112

    Article  CAS  PubMed  Google Scholar 

  • Nolden L, Ngouto-Nkili C-E, Bendt AK, Krämer R, Burkovski A (2001) Sensing nitrogen limitation in Corynebacterium glutamicum: the role of glnK and glnD. Mol Microbiol 42:1281–1295

    Article  CAS  PubMed  Google Scholar 

  • O’Driscoll B, Grahan CG, Hill C (1996) Adaptive acid tolerance response in Listeria monocytogenes: isolation of an acid-tolerant mutant which demonstrates increased virulence. Appl Environ Microbiol 62:1693–1698

    Article  PubMed  PubMed Central  Google Scholar 

  • Peter H, Weil B, Burovski A, Krämer R, Morbach S (1998) Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: identification, sequencing, and characterization of the proline/ectoine/glycine betaine carrier, EctP. J Bacteriol 180:6005–6012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Presser KA, Ratkowsky DA, Ross T (1997) Modeling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appl Environ Microbiol 63:2355–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Presser KA, Ross T, Ratkowsky DA (1998) Modeling the growth limits (growth/no growth interface) of Escherichia coli as a function of temperature, pH, lactic acid concentration, and water activity. Appl Environ Microbiol 64:1773–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Primm TP, Andersen SJ, Mizrahi V, Avarbock DA, Rubin H, Barry CE (2000) The stringent response of Mycobacterium tuberculosis is required for long-term survival. J Bacteriol 182:4889–4898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roe AJ, O’Byrne C, McLaggan D, Booth IR (2002) Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiology 148:2215–2222

    Article  CAS  PubMed  Google Scholar 

  • Rönsch H (2000) Untersuchung zum Einfluss der Osmoregulation auf die Aminosäureproduktion mit Corynebacterium glutamicum. Ph.D. Thesis, University Cologne, Germany

  • Ross T, Ratkowsky DA, Mellefont LA, McMeekin TA (2003) Modelling the effects of temperature, water activity, pH and lactic acid concentration on the growth rate of Escherichia coli. Int J Food Microbiol 82:33–43

    Article  CAS  PubMed  Google Scholar 

  • Saklani-Jusforgues H, Fontan E, Goossens PL (2000) Effect of acid-adaptation on Listeria monocytogenes survival and translocation in a murine intragastric infection model. FEMS Microbiol Lett 193:155–159

    Article  CAS  PubMed  Google Scholar 

  • Salmond CV, Kroll RG, Booth IR (1984) The effect of food preservatives on pH homeostasis in Escherichia coli. J Gen Microbiol 130:2845–2850

    CAS  PubMed  Google Scholar 

  • Shah AH, Hameed A, Ahmad S, Khan GM (2002) Optimization of culture conditions for l-lysine fermentation by Corynebacterium glutamicum. Online J Biol Sci 2:151–156

    Article  Google Scholar 

  • Shelef LA (1994) Antimicrobial effects of lactate: a review. J Food Prot 57:445–450

    Article  CAS  PubMed  Google Scholar 

  • Silberbach M, Schäfer M, Hüser AT, Kalinowski J, Pühler A, Krämer R, Burkovski A (2005) Adaptation of Corynebacterium glutamicum to ammonium limitation: a global analysis using transcriptome and proteome techniques. Appl Environ Microbiol 71:2391–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skjerdal OT, Sletta H, Flenstad SG, Josefsen KD, Levine DW, Ellingsen TE (1996) Changes in intracellular composition in response to hyperosmotic stress of NaCl, sucrose, or glutamic acid in Brevibacterium lactofermentum and Corynebacterium glutamicum. Appl Microbiol Biotechnol 44:635–642

    Article  CAS  Google Scholar 

  • Stansen C, Uy D, Delaunay S, Eggeling L, Goergen J-L, Wendisch VF (2005) Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71:5920–5928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stöckmann C, Maier U, Anderlei T, Knocke C, Gellissen G, Büchs J (2003) The oxygen transfer rate as key parameter for the characterization of Hansenula polymorpha screening cultures. J Ind Microbiol Biotechnol 30:613–622

    Article  PubMed  CAS  Google Scholar 

  • Varela C, Agosin E, Baez M, Klapa M, Stephanopoulos G (2003) Metabolic flux redistribution in Corynebacterium glutamicum in response to osmotic stress. Appl Microbiol Biotechnol 60:547–555

    Article  CAS  PubMed  Google Scholar 

  • Watson SP, Clements MO, Foster SJ (1998) Characterization of the starvation-survival response of Staphylococcus aureus. J Bacteriol 180:1750–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wehmeier L, Schäfer A, Burkovski A, Krämer R, Mechold U, Malke H, Pühler A, Kalinowski J (1998) The role of the Corynebacterium glutamicum rel gene in (p)ppGpp metabolism. Microbiology 144:1853–1862

    Article  CAS  PubMed  Google Scholar 

  • Wehmeier L, Brockmann-Gretza O, Pisabarro A, Tauch A, Pühler A, Martin JF, Kalinowski J (2001) A Corynebacterium glutamicum mutant with a defined deletion within the rplK gene is impaired in (p)ppGpp accumulation upon amino acid starvation. Microbiology 147:691–700

    Article  CAS  PubMed  Google Scholar 

  • Wendisch VF, DeGraaf AA, Sahm H, Eikmanns BJ (2000) Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J Bacteriol 182:3088–3096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf A, Krämer R, Morbach S (2003) Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC 13032 and their significance in response to osmotic stress. Mol Microbiol 49:1119–1134

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dipl.-Ing. Karen Otten and Prof. Dr.-Ing. Horst R. Maier from the institute for ceramic components in mechanical engineering from RWTH Aachen University for their help and advice. This work was supported by a grant from the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Büchs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seletzky, J.M., Noack, U., Fricke, J. et al. Metabolic activity of Corynebacterium glutamicum grown on l-lactic acid under stress. Appl Microbiol Biotechnol 72, 1297–1307 (2006). https://doi.org/10.1007/s00253-006-0436-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0436-0

Keywords

Navigation