Skip to main content
Log in

Enhancement of recombinant streptokinase production in Lactococcus lactis by suppression of acid tolerance response

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lactococcus lactis is a potential host for production of recombinant proteins, especially of therapeutic importance. However, in glucose-grown cultures, lowering of pH due to accumulation of lactic acid and the concomitant induction of acid tolerance response (ATR) may affect the recombinant protein produced. In this work, we have analyzed the effect of culture pH and the associated ATR on production of recombinant streptokinase. Streptokinase gene was cloned and expressed as a secretory protein in L. lactis under the control of P170 promoter. It was found to undergo degradation to form inactive products leading to low productivity. The extent of degradation and productivity of streptokinase was greatly influenced by the development of ATR, which was dependent on the pH of the culture and initial phosphate concentration of the medium. It was found that high pH and high initial phosphate concentration leads to suppression of ATR and this results in at least 2.5-fold increase in streptokinase productivity and significant decrease in degradation of streptokinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (2002) Current protocols in molecular biology. Wiley, New Jersey

    Google Scholar 

  • Bermudez-Humaran LG, Cortes-Perez NG, Le Loir Y, Gruss A, Rodriguez-Padilla C, Saucedo-Cardenas O, Langella P, de Oca-Luna RM (2003) Fusion to a carrier protein and a synthetic propeptide enhances E7 HPV-16 production and secretion in Lactococcus lactis. Biotechnol Prog 19:1101–1104

    Article  CAS  PubMed  Google Scholar 

  • Bredmose L, Madsen SM, Vrang A, Ravn P, Johnsen MG, Arnau J, Israelsen H (2001) Development of a heterologous gene expression system for use in Lactococcus lactis. In: Merten OW, Mattonovich D, Lang C, Larsson G, Neubauer P, Porro D, Postma P, de Mattos JT, Cole JA (eds) Recombinant protein production with prokaryotic and eukaryotic cells. Kluwer, The Netherlands, pp 265–269

    Google Scholar 

  • de Vos WM, Hugenholtz J (2004) Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends Biotechnol 22:72–79

    Article  PubMed  CAS  Google Scholar 

  • Duwat P, Ehrlich SD, Gruss A (1999) Effects of metabolic flux on stress response pathways in Lactococcus lactis. Mol Microbiol 31:845–858

    Article  CAS  PubMed  Google Scholar 

  • Frees D, Ingmer H (1999) ClpP participates in the degradation of misfolded protein in Lactococcus lactis. Mol Microbiol 31:79–87

    Article  CAS  PubMed  Google Scholar 

  • Frees D, Vogensen FK, Ingmer H (2003) Identification of proteins induced at low pH in Lactococcus lactis. Int J Food Microbiol 87:293–300

    Article  CAS  PubMed  Google Scholar 

  • Giuliano M, Schiraldi C, Marotta MR, Hugenholtz J, De Rosa M (2004) Expression of Sulfolobus sulfataricus alpha glucosidase in Lactococcus lactis. Appl Microbiol Biotechnol 64:829–832

    Article  CAS  PubMed  Google Scholar 

  • Holo H, Nes IF (1989) High frequency transformation by electroporation of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutkins RW, Nannen NL (1993) pH homeostasis in lactic acid bacteria. J Dairy Sci 76:2354–2365

    Article  CAS  Google Scholar 

  • Jackson KW, Malke H, Gerlach D, Ferretti JJ, Tang J (1986) Active streptokinase from the cloned gene in Streptococcus sanguis is without the carboxy terminal 32 residues. Biochemistry 25:108–114

    Article  CAS  PubMed  Google Scholar 

  • Jeong KJ, Choi JH, Yoo WM, Keum KC, Yoo NC, Lee SY, Sung M (2004) Constitutive production of human leptin by fed-batch culture of recombinant rpoS Escherichia coli. Protein Expr Purif 36:150–156

    Article  CAS  PubMed  Google Scholar 

  • Klessen C, Malke H (1986) Expression of streptokinase gene from Streptococcus equisimilis in Bacillus subtilis. J Basic Microbiol 26:75–81

    Article  CAS  PubMed  Google Scholar 

  • Kuipers OP, Pascalle G, de Ruyter GA, Kleerebezem M, de Vos WM (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21

    Article  CAS  Google Scholar 

  • Laplace F, Muller J, Gumpert J, Malke H (1989) Novel shuttle vectors for improved streptokinase expression in streptococci and bacterial L-forms. FEMS Microbiol Lett 65:89–94

    Article  CAS  Google Scholar 

  • Madsen SM, Arnau J, Vrang A, Givskov M, Isrealsen H (1999) Molecular characterization of the pH-inducible and growth phase independent promoter P170 of Lactococcus lactis. Mol Microbiol 32:75–87

    Article  CAS  PubMed  Google Scholar 

  • Malke H, Lorenz D, Ferretti JJ (1987a) Streptokinase: cloning, expression and excretion by Escherichia coli. Proc Natl Acad Sci USA 81:3357–3561

    Google Scholar 

  • Malke H, Lorenz D, Ferretti JJ (1987b) Streptokinase: expression of altered forms. In: Ferreti JJ, Curtiss R III (eds) Streptococcal Genetics. American Society for Microbiology, Washington, DC, pp 143–149

    Google Scholar 

  • Medved LV, Solovjov DA, Ingham KC (1996) Domain structure, stability and interactions in streptokinase. Eur J Biochem 239:333–339

    Article  CAS  PubMed  Google Scholar 

  • Mierau I, Olieman K, Mond J, Smid EJ (2005) Optimization of Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications. Microb Cell Fact 4:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miyoshi A, Poquet I, Azevedo V, Commissaire J, Bermudez-Humaran L, Domakova E, Le Loir Y, Oliveira SC, Gruss A, Langella P (2002) Controlled production of stable heterologous proteins in Lactococcus lactis. Appl Environ Microbiol 68:3141–3146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nauta A, van Sinderen D, Karsens H, Smit E, Venema G, Kok J (1996) Inducible gene expression mediated by a repressor-operator system isolated from Lactococcus lactis bacteriophage r1t. Mol Microbiol 19:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Nouaille S, Rebeiro LA, Miyoshi A, Pontes D, Le Loir Y, Olivera SC, Langella P, Azevedo V (2003) Heterologous protein production and delivery system for Lactococcus lactis. Genet Mol Res 2:102–111

    PubMed  Google Scholar 

  • Nouaille S, Bermudez-Humaran L, Adel-Patient K, Commissaire J, Wal JM, Azevedo V, Langella P, Chatel JM (2005) Improvement of bovine beta-lactoglobulin production and secretion in Lactococcus lactis. Braz J Med Biol Res 38:353–359

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan E, Condon S (1997) Intracellular pH is a major factor in the induction of tolerance to acid and other stresses in Lactococcus lactis. Appl Environ Microbiol 63:4210–4215

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan E, Condon S (1999) Relationship between acid tolerance, cytoplasmic pH, and ATP and H+-ATPase levels in chemostat cultures of Lactococcus lactis. Appl Environ Microbiol 65:2287–2293

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan DJ, Walker SA, West SG, Klaenhammer TR (1996) Development of an expression strategy using a lytic phage to trigger explosive plasmid amplification and gene expression. Biotechnology 14:82–87

    PubMed  Google Scholar 

  • Poolman B, Nijssen RMJ, Konings WN (1987a) Dependence of Streptococcus lactis phosphate transport on internal phosphate concentration and internal pH. J Bacteriol 169:5373–5378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poolman B, Driessen AJM, Konings WN (1987b) Regulation of solute transport in Streptococci by external and internal pH values. Microbiol Rev 51:498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poquet I, Ehrlich SD, Gruss A (1998) An export-specific reporter designed from gram-positive bacteria: application to Lactococcus lactis. J Bacteriol 180:1904–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rallu F, Gruss A, Maguin E (1996) Lactococcus lactis and stress. Antonie van Leeuwenhoek 70:243–251

    Article  CAS  PubMed  Google Scholar 

  • Rallu F, Gruss A, Ehrlich SD, Maguin E (2000) Acid- and multistress-resistant mutants of Lactococcus lactis: identification of intracellular stress signals. Mol Microbiol 35:517–528

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro LA, Azevedo V, Le Loir Y, Oliveira SC, Dieye Y, Piard JC, Gruss A, Langella P (2002) Production and targeting of the Brucella abortus antigen L7/L121 in Lactococcus lactis. Appl Environ Microbiol 68:910–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowbury RJ, Goodson M, Wallace AD (1992) The PhoE porin and transmission of the chemical stimulus for induction of acid resistance (acid habituation) in Escherichia coli. J Appl Bacteriol 72:233–243

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press

  • Sanders JW, Venema G, Kok J (1997) A chloride-inducible gene expression cassette and its use in induced lysis of Lactococcus lactis. Appl Environ Microbiol 63:4877–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava R, Cha HJ, Peterson MS, Bentley WE (2000) Antisense downregulation of σ32 as a transient metabolic controller in Escherichia coli: effects on yield of active organophosphorus hydrolase. Appl Environ Microbiol 66:4366–4371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sybesma W, Burgess C, Starrenburg M, van Sinderen D, Hugenholtz J (2004) Multivitamin production in Lactococcus lactis using metabolic engineering. Metab Eng 6:109–115

    Article  CAS  PubMed  Google Scholar 

  • Ullerup A, Saxild HH, Nilsson D (1996) Regulation of Lactococcus lactis ftsH expression, abstr. H8. In: Abstracts of the fifth symposium on lactic acid bacteria: genetics, metabolism and applications 1996

  • Willsky GR, Malamy MH (1980) Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. J Bacteriol 144:356–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong SL, Ye R, Nathoo S (1994) Engineering and production of streptokinase in a Bacillus subtilis expression-secretion system. Appl Environ Microbiol 60:517–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yazdani SS, Mukherjee KJ (1998) Overexpression of streptokinase using a fed-batch strategy. Biotechnol Lett 20:923–927

    Article  CAS  Google Scholar 

  • Young KC, Shi GY, Wu DH, Chang LC, Chang BI, Ou CP, Wu HL (1998) Plasminogen activation by streptokinase via a unique mechanism. J Biol Chem 273:3110–3116

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Bioneer, Denmark for providing us with L. lactis expression strain and plasmids, Dr. K.J. Mukherjee (Jawaharlal Nehru University, New Delhi) for giving us pSSY4 plasmid, Dr. Behnaz Parhami-Seren (University of Vermont, Burlington) for providing us with anti-streptokinase antibody, and Mr. Balaji Balagurunathan (Dept. of Biotechnology, IIT-Madras) for valuable comments and suggestions towards this work and manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guhan Jayaraman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sriraman, K., Jayaraman, G. Enhancement of recombinant streptokinase production in Lactococcus lactis by suppression of acid tolerance response. Appl Microbiol Biotechnol 72, 1202–1209 (2006). https://doi.org/10.1007/s00253-006-0410-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0410-x

Keywords

Navigation