Skip to main content
Log in

Mutation on N-terminus of polyhydroxybutyrate synthase of Ralstonia eutropha enhanced PHB accumulation

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoate (PHA) synthase is the central enzyme involved in the biosynthesis of PHA, a family of bacterial biodegradable polyesters. Due to its high variability, the N-terminal fragment of this enzyme was previously considered as unnecessary for a functionally active enzyme. In this study, polyhydroxybutyrate synthase from Ralstonia eutropha (PhbCRe) with a deletion on N-terminal 88 amino acid residues showed a significant reduced activity, as reflected by only 1.5% PHB accumulation compared with the wild type which produced 58.4% PHB of the cell dry weight. Whilst several site-specific mutagenesis results revealed the amphiphilic α-helix assembled by the amino acid region, D70–E88 played an important role in both maintaining the PHB synthase activity and regulating molecular weight and polydispersity of accumulated PHB homopolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amara AA, Rehm BHA (2003) Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoates synthase from Pseudomonas aeruginosa-mediated synthesis of new polyester: identification of catalytic residues. Biochem J 374:413–421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Pseudomonas oleovorans as a source of poly(3-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54:1977–1982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chou PY, Fasman GD (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol 47:45–457

    PubMed  CAS  Google Scholar 

  • Combet C, Blanchet C, Geourjon C, Deléage G (2000) Network protein sequence analysis. Trends Biochem Sci 291:147–150

    Article  Google Scholar 

  • Creighton TE (1982) Proteins. Freeman, New York

    Google Scholar 

  • Geourjon C, Deléage G (1995) SOPMA: significant improvement in protein secondary structures prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684

    PubMed  CAS  Google Scholar 

  • Jendrossek D, Schirmer A, Schlegel HG (1996) Biodegradation of polyhydroxyalkanoic acids. Appl Microbiol Biotechnol 46:451–463

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Kappock J, Frick T, Sinskey A, Stubbe J (2000) Lipases provide a new mechanistic model for polyhydroxybutyrate (PHB) synthase: characterization of the functional residues in Chromatium vinosum PHB synthase. Biochemistry 39:3927–3936

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, Yuan W, Wodzinska J, Park C, Sinskey A, Stubbe J (2001) Mechanistic studies on class I polyhydroxybutyrate (PHB) synthase from Ralstonia eutropha: class I and III synthases share a similar catalytic mechanism. Biochemistry 40:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Kalousek S, Dennis D, Lubitz W (1992) Genetic engineering of PHB synthase from Alcaligenes eutrophus H16. FEMS Microbiol Rev 103:426–427

    Google Scholar 

  • Kawaguchi Y, Doi Y (1992) Kinetics and mechanism of synthesis and degradation of poly(3-hydroxybutyrate) in Alcaligenes eutrophus. Macromolecules 25:2324–2329

    Article  CAS  Google Scholar 

  • Klinke S, De Roo G, Witholt B, Kessler B (2000) Role of phaD in accumulation of medium-chain-length poly(3-hydroxyalkanoates) in Pseudomonas oleovorans. Appl Environ Microbiol 66:3705–3710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kneller DG, Cohen FE, Langridge R (1990) Improvements in protein secondary structure prediction by an enhanced neural network. J Mol Biol 214:171–182

    Article  PubMed  CAS  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM II, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBRMCS carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Park SH, Lee Y, Lee SH (2003) Production of chiral and other valuable compounds from microbial polyesters. In: Steinbüchel A (ed) Biopolymers, vol 4. Wiley-VCH Verkag GmbH, Weinheim, Germany pp 375–387

    Google Scholar 

  • Lemoigne M (1926) Produits de deshydration et depolymerisation de l’acide β-oxybytyrique. Bull Soc Chim Biol 8:770–781

    CAS  Google Scholar 

  • Madison LL, Huisman GM (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Normi YM, Hiraishi T, Taguchi S, Abe H, Sudesh K, Najimudin N, Doi Y (2005a) Characterization and properties of G4X mutants of Ralstonia eutropha PHA synthase for poly(3-hydroxybutyrate) biosynthesis in Escherichia coli. Macromol Biosci 5:197–206

    Article  PubMed  CAS  Google Scholar 

  • Normi YM, Hiraishi T, Taguchi S, Sudesh K, Najimudin N, Doi Y (2005b) Site-directed saturation mutagenesis at residue F420 and recombination with another beneficial mutation of Ralstonia eutropha polyhydroxyalkanoate synthase. Biotechnol Lett 27:705–712

    Article  PubMed  CAS  Google Scholar 

  • Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL, Verschueren KGG, Goldman A (1992) The α/β hydrolase fold. Protein Eng 5:197–211

    Article  PubMed  CAS  Google Scholar 

  • Peoples OP, Sinskey AJ (1989) Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J Biol Chem 264:15298–15303

    PubMed  CAS  Google Scholar 

  • Pötter M, Madkour MH, Mayer F, Steinbüchel A (2002) Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology 148:2413–2426

    Article  PubMed  Google Scholar 

  • Pries A, Priefert H, Krüger N, Sternbüchel A (1991) Identification and characterization of two Alcaligenes eutrophus gene loci relevant to poly(β-hydroxybutyric acid)-leaky phenotype which exhibit homology to ptsH and ptsI of Escherichia coli. J Bacteriol 173:5843–5853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prieto MA, Bühler B, Jung K, Witholt B, Kessler B (1999) PhaF, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes. J Bacteriol 181:858–868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramsay BA, Lomaliza K, Chavarie C, Bubé B, Bataille P, Ramsay JAB (1990) Production of poly-(β-hydroxybutyric-co-β-hydroxyvaleric) acids. Appl Environ Microbiol 56:2093–2098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rehm BHA (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rehm BHA, Antonio RV, Spiekermann P, Amara AA, Steinbüchel A (2002) Molecular characterization of the poly(3-hydroxybutyrate) (PHB) synthase from Ralstonia eutropha: in vitro evolution, site-specific mutagenesis and development of a PHB synthase protein model. Biochim Biophys Acta 1594:178–190

    Article  PubMed  CAS  Google Scholar 

  • Rehm BHA, Steinbüchel A (1999) Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25:3–19

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Schubert P, Krüger N, Steinbüchel A (1991) Molecular analysis of the Alcaligenes erutropha poly(3-hydroxybutyrate) biosynthetic operon: identification of the N-terminus of poly(3-hydroxybutyrate) synthase and identification of the promoter. J Bacteriol 173:168–175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Segrest JP, De Loof H, Dohlman JG, Brouillette CG, Anantharamaiah GM (1990) Amphipathic helix motif: classes and properties. Proteins 8:103–117

    Article  PubMed  CAS  Google Scholar 

  • Sim SJ, Snell KD, Hogan SA, Stubbe J, Rha CK, Sinskey A (1997) PHA synthase activity controls the molecular weight and polydispersity of polyhydroxybutyrate in vivo. Nat Biotechnol 15:63–67

    Article  PubMed  CAS  Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–791

    Article  CAS  Google Scholar 

  • Spiekermann P, Rehm BHA, Kalscheuer R, Baumeister D, Steinbüchel A (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80

    Article  PubMed  CAS  Google Scholar 

  • Steinbüchel A, Lütke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16:81–96

    Article  CAS  Google Scholar 

  • Taguchi S, Nakamura H, Hiraishi T, Yamato I, Doi Y (2002) In vitro evolution of a polyhydroxybutyrate synthase by intragenic suppression-type mutagenesis. J Biochem (Tokyo) 131:801–806

    Article  CAS  Google Scholar 

  • Tian SJ, Lai WJ, Zheng Z, Wang HX, Chen GQ (2005) Effect of over-expression of phasin gene from Aeromonas hydrophila on biosynthesis of copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate. FEMS Microbiol Lett 244:19–25

    Article  PubMed  CAS  Google Scholar 

  • Valentin HE, Steinbüchel A (1994) Application of enzymatically synthesized short-chain-length hydroxyl fatty acid coenzyme A thioesters for assay of polyhydroxyalkanoic acid synthases. Appl Microbiol Biotechnol 40:699–709

    Article  CAS  Google Scholar 

  • Williams SF, Martin DP, Horowitz DH, Peoples OP (1999) PHA applications: addressing the price performance issue. I. Tissue engineering. Int J Biol Macromol 25:111–121

    Article  PubMed  CAS  Google Scholar 

  • York GM, Stubbe J, Sinskey AJ (2001) New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate. J Bacteriol 183:2394–2397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng Z, Bei FF, Tian HL, Chen GQ (2005) Effects of crystallization of polyhydroxyalkanoate blend on surface physiochemical properties and interactions with rabbit articular cartilage chondrocytes. Biomaterials 26:3537–3548

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z, Deng Y, Lin XS, Zhang LX, Chen GQ (2003) Induced production of rabbit articular cartilage-derived chondrocytes collagen II on polyhydroxyalkanoates blends. J Biomater Sci Polym Ed 14:615–624

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Nature Science Foundation for Distinguished Young Scholar (grant no. 30225001). The State 863 Funds (no. 2002A213051) also contributed financially to this study. We are also in debt to Professor S. Taguchi of Hokkaido University/Japan and Professor B. Rehm of Massey University/New Zealand for their critical comments and suggestions to improve this paper. Their expert views have contributed to the quality of this paper. The plasmid pBHR68 and the host strain R.eutropha PHB4 were kindly provided by Dr. B. Rehm and Professor A. Steinbüchel of the Westfälische Wilhelm-Univerität Münster, Münster, Germany. We also thank Jing-Yu Chen and Andrew R. Chang for their assistance in the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qiang Chen.

Additional information

Zhong Zheng and Ming Li contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Z., Li, M., Xue, XJ. et al. Mutation on N-terminus of polyhydroxybutyrate synthase of Ralstonia eutropha enhanced PHB accumulation. Appl Microbiol Biotechnol 72, 896–905 (2006). https://doi.org/10.1007/s00253-006-0371-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0371-0

Keywords

Navigation