Skip to main content
Log in

A functional analysis of the Bifidobacterium longum cscA and scrP genes in sucrose utilization

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The role of genes involved in sucrose catabolism was investigated with a view to designing effective prebiotic substrates to encourage the growth of Bifidobacterium in the gut. Two gene clusters coding for sucrose utilisation in Bifidobacterium longum NCC2705 were identified in the published genome. The genes encoding putative sucrose degrading enzymes, namely, the scrP (sucrose phosphorylase) and the cscA (β-fructofuranosidase), were cloned from B. longum NCIMB 702259T and expressed in Escherichia coli DH5α. Both complemented the sucrase negative phenotype of untransformed cells and showed specific sucrase activity. Transcriptional analysis of the expression of the genes in B. longum grown in the presence of various carbohydrate substrates showed induction of scrP gene expression in the presence of sucrose and raffinose, but not in the presence of glucose. The cscA gene showed no increased transcription in B. longum grown in the presence of any of the carbohydrates tested. Phylogenetic analysis indicates that the B. longum CscA protein belongs to a distinct phylogenetic cluster of intracellular fructosidases, which specifically cleave the shorter fructose oligosaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aiba H, Adhya S, de Crombrugghe B (1981) Evidence for two functional gal promoters in intact Escherichia cells. J Biol Chem 11905–11910

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burne RA, Penders JE (1992) Characterization of the Streptococcusmutans GS-5 fruA gene encoding exo-β-d-fructosidase. Infect Immun 60:4621–4632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiou C-Y, Wang H-H, Shaw G-C (2002) Identification and characterization of the non-PTS fru locus of Bacillus magaterium ATCC 14581. Mol Genet Genomics 268:240–248

    Article  CAS  PubMed  Google Scholar 

  • Crittenden RG, Playne MJ (1996) Production, properties and applications of food-grade oligosaccharides. Trends Food Sci Technol 7:353–361

    Article  CAS  Google Scholar 

  • Degnan BA, Macfarlane GT (1993) Transport and metabolism of glucose and arabinose in Bifidobacterium breve. Arch Microbiol 160:144–151

    Article  CAS  PubMed  Google Scholar 

  • Ehrmann MA, Korakli M, Vogel RF (2003) Identification of the gene for β-fructofuranosidase of Bifidobacterium lactis DSM10140T and characterization of the enzyme expressed in Escherichia coli. Curr Microbiol 46:391–397

    Article  CAS  PubMed  Google Scholar 

  • Gibson GR, Wang X (1994) Selective enrichment of bifidobacteria from human gut contents by oligofructose using continuous culture. FEMS Lett 118:121–128

    Article  CAS  Google Scholar 

  • Holzapfel W, Haberer P, Snel J, Schillinger U, Huis in’t Veld J (1998) Overview of gut microflora and probiotics. Int J Food Microbiol 41:85–101

    Article  CAS  PubMed  Google Scholar 

  • Imamura L, Hisamitsu K, Kobashi K (1994) Purification and characterization of β-fructofuranosidase from Bifidobacterium infantis. Biol Pharm Bull 17:596–602

    Article  CAS  PubMed  Google Scholar 

  • Janer C, Rohr LM, Peláez C, Laloi M, Cleusix V, Requena T, Meile L (2004) Hydrolysis of oligofructoses by the recombinant β-fructofuranosidase from Bifidobacterium lactis. Syst Appl Microbiol 24:279–285

    Article  Google Scholar 

  • Kim M, Kwon T, Lee HJ, Kim KH, Chung DK, Ji GE, Byeon E-S, Lee J-H (2003) Cloning and expression of sucrose phosphorylase gene from Bifidobacterium longum in E. coli and characterization of the recombinant enzyme. Biotechnol Lett 25:1211–1217

    Article  CAS  PubMed  Google Scholar 

  • Kitaoka M, Kiyoshi H (2002) Carbohydrate-processing phosphorylytic enzymes. Trends Glycosci Glycotechnol 14:35–50

    Article  CAS  Google Scholar 

  • Kolida S, Tuohy K, Gibson GR (2002) Prebiotic effects of inulin and oligofructose. Br J Nutr 87 (Suppl) 2:S193–S197

    Article  CAS  PubMed  Google Scholar 

  • Martin I, Debarbouille M, Ferrari E, Klier A, Rapoport G (1987) Characterization of the levanase gene of Bacillus subtilis which shows homology to yeast invertase. Mol Gen Genet 208:177–84

    Article  CAS  PubMed  Google Scholar 

  • Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, Zanoni S, Matteuzzi D (2005) Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Appl Environ Microbiol 71:6150–6158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberfroid M (1999) Concepts in functional foods: the case of inulin and oligofructose. J Nutr 129:1398S–1401S

    Article  CAS  PubMed  Google Scholar 

  • Russell RR, Aduse-Opoku J, Sutcliffe IC, Tao L, Ferretti JJ (1992) A binding protein-dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism. J Biol Chem 267:4631–4637

    CAS  PubMed  Google Scholar 

  • Ryan SM, Fitzgerald GF, van Sinderen D (2005) Transcriptional regulation and characterization of a novel β-fructofuranosidase-encoding gene from Bifidobacterium breve UCC2003. Appl Environ Microbiol 71:3475–3482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito K, Kondo K, Kojima I, Yokota A, Tomita F (2000) Purification and characterization of 2,6-β-d-fructan-6-levanbiohydrolase from Streptomycesexfoliatus F3-2. Appl Environ Microbiol 66:252–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory, Cold Spring Harbour, New York

    Google Scholar 

  • Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen MC, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A 99:14422–14427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverstein R, Voet J, Reed D, Abeles RH (1967) Purification and mechanism of action of sucrose phosphorylase. J Biol Chem 242:1338–1346

    CAS  PubMed  Google Scholar 

  • Song E-K, Kim H, Sung H-K, Cha J (2002) Cloning and characterization of a levanbiohydrolase from Microbacterium laevaniformans ATCC 15953. Gene 291:45–55

    Article  CAS  PubMed  Google Scholar 

  • Sprogøe D, van den Broek LAM, Mirza O, Kastrup JS, Voragen AGJ, Gajhede M, Skov LK (2004) Crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis. Biochem 43:1156–1162

    Article  Google Scholar 

  • Trindade MI, Abratt VR, Reid SJ (2003) Induction of sucrose utilisation genes from Bifidobacterium lactis by sucrose and raffinose. Appl Environ Microbiol 69:24–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuohy KM, Probert HM, Smejkal CW, Gibson GR (2003) Using probiotics and prebiotics to improve gut health. Drug Discov Today 8:692–700

    Article  PubMed  Google Scholar 

  • van den Broek LAM, Ton J, Verdoes JC, van Laere KMJ, Voragen AGJ, Beldman G (1999) The synthesis of α-galacto-oligosaccharides by cloned α-galactosidase from Bifidobacterium aldolescentis. Biotechnol Lett 21:441–445

    Article  Google Scholar 

  • van den Broek LAM, van Boxtel EL, Kievit RP, Verhoef R, Beldman G, Voragen AGJ (2004) Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase from Bifidobacterium adolescentis DSM20083. Appl Microbiol Biotechnol 65:219–227

    Article  PubMed  Google Scholar 

  • Warchol M, Perrin S, Grill JP, Schneider F (2002) Characterization of a purified β-fructofuranosidase from Bifidobacterium infantis ATCC 15697. Lett Appl Microbiol 35:462–467

    Article  CAS  PubMed  Google Scholar 

  • Zabeau M, Stanley KK (1982) Enhanced expression of cro-β-galactosidase fusion proteins under the control of the PR promoter of bacteriophage lambda. EMBO J 1:1217–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors acknowledge support from the National Research Foundation, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Reid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kullin, B., Abratt, V.R. & Reid, S.J. A functional analysis of the Bifidobacterium longum cscA and scrP genes in sucrose utilization. Appl Microbiol Biotechnol 72, 975–981 (2006). https://doi.org/10.1007/s00253-006-0358-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0358-x

Keywords

Navigation