Skip to main content
Log in

Citrate catabolism and production of acetate and succinate by Lactobacillus helveticus ATCC 15807

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The citrate metabolism of Lactobacillus helveticus ATCC 15807 was studied under controlled-pH fermentations at pH 4.5 and pH 6.2. The micro-organism was able to co-metabolize citrate and lactose at both pH from the beginning of growth, which enhanced the rate of lactose consumption and lactic acid production, compared with cultures without citrate. The effect of citrate on cell growth was dependent on the balance between the ratio of dissociated to non-dissociated forms of the acetic acid produced and the extra ATP gained by the cells, both facts related to the citrate metabolism. The citrate catabolism determined a change in the fermentation pattern of L. helveticus ATCC 15807 from homolactic to a mixed-acid profile, regardless of the external pH. Within this new fermentation pattern, acetate was the major product formed (13–20 mM), followed by succinate (2.4–3.7 mM), while acetoine, dyacetile or butanediol were not detected. The mixed-acid profile displayed by L. helveticus ATCC 15807 was linked to NADH2 oxidase activity rather than the acetate kinase enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anders RF, Hogg DM, Jago GR (1970) Formation of hydrogen peroxide by group N streptococci and its effects on their growth and metabolism. Appl Microbiol 19:608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booth IR (1985) Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49:359–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Broadbent JR, McMahon DJ, Oberg CJ, Welker DL (2001) Use of exopolysaccharide-producing cultures to improve the functionality of low fat cheese. Int Dairy J 11:433–439

    Article  CAS  Google Scholar 

  • Cogan TM (1987) Co-metabolism of citrate and glucose by Leuconostoc spp. Effects on growth, substrates and products. J Appl Bacteriol 63:551–558

    Article  CAS  Google Scholar 

  • Cogan TM, Hill C (1993) Cheese starter cultures. In: Fox PF (ed) Cheese, chemistry, physics and microbiology. Chapman & Hall, London, pp 193–255

    Chapter  Google Scholar 

  • Condon S (1987) Responses of lactic acid bacteria to oxygen. FEMS Microbiol Rev 46:269–280

    Article  CAS  Google Scholar 

  • De Figueroa RM, Benito de Cárdenas IL, Sesma F, Alvarez F, Ruiz Holgado AP de, Oliver G (1996) Inducible transport of citrate in Lactobacillus rhamnosus ATCC 7469. J Appl Bacteriol 81:348–354

    PubMed  Google Scholar 

  • De Man JC, Rogosa M, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 42:123–150

    Google Scholar 

  • Dimroth P (1987) Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria. Microbiol Rev 51:320–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dudley EG, Steele JL (2005) Succinate production and citrate catabolism by Cheddar cheese non starter lactobacilli. J Appl Microbiol 98:14–23

    Article  CAS  PubMed  Google Scholar 

  • Gawehn K, Bergmeyer HU (1974) D(−)lactate. In: Bergmeyer HU, Gawehn K (eds) Methods of enzymatic analysis. Academic, New York, pp 1469–1475

    Google Scholar 

  • Gutmann I, Walhlefeld AW (1974) Determination with lactate dehydrogenase and NAD. In: Bergmeyer HU, Gawehn K (eds) Methods in enzymatic analysis. Academic, New York, pp 1464–1468

    Google Scholar 

  • Hickey M, Hillier WAJ, Jago GR (1983) Metabolism of pyruvate and citrate in lactobacilli. Aust J Biol Sci 36:487–496

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz J (1993) Citrate metabolism in lactic acid bacteria. FEMS Microbiol Rev 12:165–178

    Article  CAS  Google Scholar 

  • Hugenholtz J, Perdon L, Abee T (1993) Growth and energy generation by Lactococcus lactis subsp. lactis biovar. diacetylactis during citrate metabolism. Appl Environ Microbiol 59:4216–4222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennes C, Dubourguier HC, Albagnac G, Nyns EJ (1991) Citrate metabolism by Lactobacillus plantarum isolated from orange juice. J Appl Bacteriol 70:380–384

    Article  CAS  Google Scholar 

  • Kimoto H, Nomura M, Suzuki I (1999) Growth energetics of Lactococcus lactis subsp. lactis biovar diacetylactis in cometabolism of citrate and glucose. Int Dairy J 9:857–863

    Article  CAS  Google Scholar 

  • Lucey CA, Condon S (1986) Active role of oxygen and NADH oxidase in growth and energy metabolism of Leuconostoc. J Gen Microbiol 132:1789–1796

    CAS  Google Scholar 

  • Perry DB, McMahon DJ, Oberg CJ (1997) Effect of exopolysaccharide producing cultures on moisture retention in low-fat mozzarella cheese. J Dairy Sci 80:799–805

    Article  CAS  Google Scholar 

  • Preninger M, Warmke R, Grosch W (1996) Identification of the character impact flavour compound of Swiss cheese by sensory studies of models. Zeit Lebensm Unters Forsch 202:30–34

    Article  Google Scholar 

  • Rose J, Grumberg-Manago AM, Korey SR, Ochoa S (1974) In: Bergmeyer HU, Gawehn K (eds) Methods in enzymatic analysis. Academic, New York, p 480

    Google Scholar 

  • Roy D, Goulet J, Le Duy A (1986) Batch fermentation of whey ultrafiltrate by Lactobacillus helveticus for lactic acid production. Appl Microbiol Biotechnol 24:206–213

    Article  CAS  Google Scholar 

  • Schmitt P, Diviès C (1991) Co-metabolism of citrate and lactose by Leuconostoc mesenteroides subsp. cremoris. J Ferment Bioeng 71:72–74

    Article  CAS  Google Scholar 

  • Starrenburg MJC, Hugenholtz J (1991) Citrate fermentation by Lactococcus and Leuconostoc spp. Appl Environ Microbiol 57:3535–3540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torino MI, Taranto MP, Font de Valdez G (2001) Mixed-acid fermentation and polysaccharide production by Lactobacillus helveticus in milk cultures. Biotechnol Lett 23:1799–1802

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and CIUNT from Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Font de Valdez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torino, M.I., Taranto, M.P. & Font de Valdez, G. Citrate catabolism and production of acetate and succinate by Lactobacillus helveticus ATCC 15807. Appl Microbiol Biotechnol 69, 79–85 (2005). https://doi.org/10.1007/s00253-005-1949-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-1949-7

Keywords

Navigation