Skip to main content
Log in

Influence of glucose fermentation on CO2 assimilation to acetate in homoacetogen Blautia coccoides GA-1

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Fermentation of glucose influences CO2 assimilation to acetate in homoacetogens. Blautia coccoides was investigated for a better understanding of the metabolic characteristics of homoacetogens in mixotrophic cultures. Batch cultures of the strain with H2/CO2 as a sole carbon source reached an acetate yield of 5.32 g/g dry cell weight after 240 h of incubation. Autotrophic metabolism was inhibited as glucose was added into the culture: the higher the glucose concentration the lower the autotrophic ability of the bacterium. Autotrophy was inhibited by high glucose concentration, probably due to the competition for coenzyme A between the Embden-Meyerhof-Parnas pathway and the Wood-Ljungdahl carbon fixation pathway, the energy (adenosine triphosphate) allocation for synthesis of cell carbon and reduction of CO2, in combination with the low pH caused by the accumulation of acetate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bernalier A, Lelait M, Rochet V, Grivet JP, Gibson GR, Durand M (1996) Acetogenesis from H2 and CO2 by methane and non-methane-producing human colonic bacterial communities. FEMS Microbiol Ecol 19:193–202

    Article  CAS  Google Scholar 

  2. Braun K, Gottschalk G (1981) Effect of molecular-hydrogen and carbon-dioxide on chemo-organotrophic growth of Acetobacterium woodii and Clostridium aceticum. Arch Microbiol 128:294–298

    Article  CAS  PubMed  Google Scholar 

  3. Cord-Ruwisch R, Seitz H-J, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch Microbiol 149:350–357

    Article  CAS  Google Scholar 

  4. Daniell J, Köpke M, Simpson SD (2012) Commercial biomass syngas fermentation. Energies 5:5372–5417

    CAS  Google Scholar 

  5. Diekert G (1990) CO2 reduction to acetate in anaerobic bacteria. FEMS Microbiol Lett 87:391–395

    Article  CAS  Google Scholar 

  6. Diekert G, Wohlfarth G (1994) Metabolism of homoacetogens. Antonie Van Leeuwenhoek 66:209–221

    Article  CAS  PubMed  Google Scholar 

  7. Drake HL, Gößner AS, Daniel SL (2008) Old acetogens, new light. Ann N Y Acad Sci 1125:100–128

    Article  CAS  PubMed  Google Scholar 

  8. Fast AG, Schmidt ED, Jones SW, Tracy BP (2015) Acetogenic mixotrophy: novel options for yield improvement in biofuels and biochemicals production. Curr Opin Biotech 33:60–72

    Article  CAS  PubMed  Google Scholar 

  9. Fuchs G (2011) Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol 65:631–658

    Article  CAS  PubMed  Google Scholar 

  10. Kamlage B, Gruhl B, Blaut M (1997) Isolation and characterization of two new homoacetogenic hydrogen-utilizing bacteria from the human intestinal tract that are closely related to Clostridium coccoides. Appl Environ Microb 63:1732–1738

    CAS  Google Scholar 

  11. Kaneuchi C, Benno Y, Mitsuoka T (1976) Clostridium coccoides, a new species from the feces of mice. Int J Syst Bacteriol 26:482–486

    Article  Google Scholar 

  12. Kotsyurbenko OR, Glagolev MV, Nozhevnikova AN, Conrad R (2001) Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature. FEMS Microbiol Ecol 38:153–159

    Article  CAS  Google Scholar 

  13. Latif H, Zeidan AA, Nielsen AT, Zengler K (2014) Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. Curr Opin Biotech 27:79–87

    Article  CAS  PubMed  Google Scholar 

  14. Leang C, Ueki T, Nevin KP, Lovley DR (2013) A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen. Appl Environ Microbiol 79:1102–1109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Li J, Lijian Y, Liu C, Ban Q (2013) Homoacetogenic strain CA3 and its optimization condition for acetate yield from glucose by fermentation. Science and Technology Review (in Chinese) 31:20–24

    Google Scholar 

  16. Li J, Ren N, Li B, Qin Z, He J (2008) Anaerobic biohydrogen production from monosaccharides by a mixed microbial community culture. Bioresource Technol 99:6528–6537

    Article  CAS  Google Scholar 

  17. Luo G, Karakashev D, Xie L, Zhou Q, Angelidaki I (2011) Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production. Biotechnol Bioeng 108(8):1816–1827

    Article  CAS  PubMed  Google Scholar 

  18. Müller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microb 69:6345–6353

    Article  Google Scholar 

  19. Nie Y, Liu H, Du G, Chen J (2008) Acetate yield increased by gas circulation and fed-batch fermentation in a novel syntrophic acetogenesis and homoacetogenesis coupling system. Bioresource Technol 99:2989–2995

    Article  CAS  Google Scholar 

  20. Loubière Pascal, Gros Evelyne, Paquet Veronique, Lindley Nicholas D (1992) Kinetics and physiological implications of the growth behaviour of Eubacterium limosum on glucose/methanol mixtures. J Gen Microbiol 138:979–985

    Article  Google Scholar 

  21. Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 1784:1873–1898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kellum Rebecca, Drake Harold L (1984) Effects of cultivation gas phase on hydrogenase of the acetogen Clostridium thermoaceticum. J Bacteriol 60(1):466–469

    Google Scholar 

  23. Rice EW, Bridgewater L, Association APH (2012) Standard methods for the examination of water and wastewater. American Public Health Association Washington, DC

    Google Scholar 

  24. Rieu Lesme F, Morvan B, Collins M, Fonty G, Willems A (1996) A new H2/CO2 using acetogenic bacterium from the rumen: description of Ruminococcus schinkii sp. nov. FEMS Microbiol Lett 140:281–286

    CAS  PubMed  Google Scholar 

  25. Saady NMC (2013) Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int J Hydrogen Energ 38:13172–13191

    Article  CAS  Google Scholar 

  26. Schiel Bengelsdorf B, Dürre P (2012) Pathway engineering and synthetic biology using acetogens. FEBS Lett 586:2191–2198

    Article  CAS  PubMed  Google Scholar 

  27. Siriwongrungson V, Zeng RJ, Angelidaki I (2007) Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis. Water Res 41:4204–4210

    Article  CAS  PubMed  Google Scholar 

  28. Daniel Steven L, Drake Harold L (1993) Oxalate and glyoxylate dependent growth and acetogenesis by Clostnidium thermoaceticum. Appl Environ Microb 55(9):3062–3069

    Google Scholar 

  29. Miller Terry L, Wolin Meyer J (1995) Bioconversion of dellulose to acetate with pure cultures of Ruminococcus albus and a hydrogen-using acetogen. Appl Environ Microb 61(11):3832–3835

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by National Natural Science Foundation of China (Grant No. 51178136), and the State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Grant No. 2013DX11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzheng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human participants

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, J., Zhang, Y. et al. Influence of glucose fermentation on CO2 assimilation to acetate in homoacetogen Blautia coccoides GA-1. J Ind Microbiol Biotechnol 42, 1217–1224 (2015). https://doi.org/10.1007/s10295-015-1646-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1646-1

Keywords

Navigation