Skip to main content
Log in

Biopolymer microencapsulations of Bacillus thuringiensis crystal preparations for increased stability and resistance to environmental stress

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Parasporal crystals synthesized by Bacillus thuringiensis (Bt) have been widely used as microbial pesticides because of their toxicity to the larval stages of specific insects. However, parasporal crystals can be damaged by environmental stresses, such as high temperature, ultraviolet radiation, and desiccation. To reduce environmental susceptibility of parasporal crystals and extend the duration of their activity, we developed a new type of protection by making microcapsules of crystals (MCs). The microcapsules were self-assembled by alternate deposition (layer by layer) of low-cost chitosan and sodium alginate (or sodium carboxymethyl cellulose) on the crystal surface. Crystal toxins (Cry1Ac) were released from microcapsules at pH values above 9.0. Bioassay results demonstrated that microencapsulated preparations had larvicidal toxicity equivalent to the non-encapsulated form. Microencapsuled crystals were protected from environmental stresses such as high temperature and desiccation. The results indicate that microcapsule protection can enhance the efficacy of Bt in pest control, especially to Lepidoptera larvae that have a alkaline midgut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arion H (2001) Carboxymethyl cellulose hydrogel-filled breast implants. Our experience in 15 years. Ann Chir Plast Esthet 46:55–59

    Article  CAS  PubMed  Google Scholar 

  • Brar SK, Verma M, Tyagi RD, Valéro JR, Surampalli RY, Banerji SK (2004) Development of sludge based stable aqueous Bacillus thuringiensis formulations. Water Sci Technol 50:229–236

    CAS  PubMed  Google Scholar 

  • Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  CAS  PubMed  Google Scholar 

  • Caruso F, Caruso RA, Möhwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282:1111–1114

    Article  CAS  PubMed  Google Scholar 

  • Costa RR, Castro E, Arias FJ, Rodríguez-Cabello JC, Mano JF (2013) Multifunctional compartmentalized capsules with a hierarchical organization from the nano to the macro scales. Biomacromolecules 14:2403–2410

    Article  CAS  PubMed  Google Scholar 

  • Delcea M, Möhwald H, Skirtach AG (2011) Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv Drug Deliv Rev 63:730–747

    Article  CAS  PubMed  Google Scholar 

  • Du C, Nickerson KW (1996) Bacillus thuringiensis HD-73 spores have surface-localized Cry1Ac toxin: physiological and pathogenic consequences. Appl Environ Microbiol 62:3722–3726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao GY, Moya S, Lichtenfeld H, Casoli A, Fiedler H, Donath E, Möhwald H (2001) The decomposition process of melamine formaldehyde cores: the key step in the fabrication of ultrathin polyelectrolyte multilayer capsules. Macromol Mater Eng 286:355–361

    Article  CAS  Google Scholar 

  • Gao CY, Donath E, Möhwald H, Shen JC (2002) Spontaneous deposition of water-soluble substances into microcapsules: phenomenon, mechanism, and application. Angew Chem Int Ed Engl 41:3789–3793

    Article  CAS  PubMed  Google Scholar 

  • García-Gutiérrez K, Poggi-Varaldo HM, Esparza-García F, Ibarra-Rendón J, Barrera-Cortés J (2011) Small microcapsules of crystal proteins and spores of Bacillus thuringiensis by an emulsification/internal gelation method. Bioprocess Biosyst Eng 34:701–708

    Article  PubMed  Google Scholar 

  • Gelernter WD (1990) Targeting insecticide-resistant markets: new developments in microbial based products. ACS Symp Ser 421:105–117

    Article  Google Scholar 

  • Huang DF, Zhang J, Song FP, Lang ZH (2007) Microbial control and biotechnology research on Bacillus thuringiensis in China. J Invertebr Pathol 95:175–180

    Article  PubMed  Google Scholar 

  • Ignoffo CM (1993) Environmental-factors affecting persistence of entomopathogens. Fla Entomol 75:516–525

    Article  Google Scholar 

  • Khorramvatan S, Marzban R, Ardjmand M, Safekordi A, Askary H (2014) The effect of polymers on the stability of microencapsulated formulations of Bacillus thuringiensis subsp. kurstaki (Bt-KD2) after exposure to ultra violet radiation. Biocontrol Sci Techn 24:215–220

    Article  Google Scholar 

  • Lambert B, Hofte H, Annys K, Jansens S, Soetaert P, Peferoen M (1992) Novel Bacillus thuringiensis insecticidal crystal protein with a silent activity against coleopteran larvae. Appl Environ Microbiol 58:2536–2542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lereclus D, Agaisse H, Gominet M, Chaufaux J (1995) Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spo0A mutant. Biotechnology (N Y) 13:67–71

    Article  CAS  Google Scholar 

  • Li LH, Puhl S, Meinel L, Germershaus O (2014a) Silk fibroin layer-by-layer microcapsules for localized gene delivery. Biomaterials 35:7929–7939

    Article  CAS  PubMed  Google Scholar 

  • Li F, Yan Y, Wang DD, Zhang J, Guo SY (2014b) Cry8Ca2-containing layer-by-layer microcapsules for the pH-controlled release of crystal protein. J Microencapsul 31:567–572

    Article  CAS  PubMed  Google Scholar 

  • Luo K, Banks D, Adang MJ (1999) Toxicity, binding, and permeability analyses of four Bacillus thuringiensis Cry1 delta-endotoxins using brush border membrane vesicles of Spodoptera exigua and Spodoptera frugiperda. Appl Environ Microbiol 65:457–464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maletz S, Wollenweber M, Kubiak K, Müller A, Schmitz S, Maier D, Hecker M, Hollert H (2015) Investigation of potential endocrine disrupting effects of mosquito larvicidal Bacillus thuringiensis israelensis (Bti) formulations. Sci Total Environ 536:729–738

    Article  CAS  PubMed  Google Scholar 

  • Mi Y, Su R, Fan DD, Zhu XL, Zhang WN (2013) Preparation of N,O-carboxymethyl chitosan coated alginate microcapsules and their application to Bifidobacterium longum BIOMA 5920. Mater Sci Eng C Mater Biol Appl 33(5):3047–3053

    Article  CAS  PubMed  Google Scholar 

  • Pardo-López L, Soberón M, Bravo A (2013) Bacillus thuringiensis insecticidal three-domain cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev 37:3–22

    Article  PubMed  Google Scholar 

  • Robertson JL, Preisler HK, Russell RM (2003) PoLoPlus Probit and Logit Analysis. User’s Guide, 36 pp, ©2000-2003 LeOra Software

  • Robertson JL, Russel RM, Preisler HK, Savin NE (2007) Bioassays with arthropods, 2nd edn. CRC Press, Boca Raton, London, New York

    Google Scholar 

  • Rodríguez AP, Martínez MG, Barrera-Cortés J, Ibarra JE, Bustos FM (2015) Bio-insecticide Bacillus thuringiensis spores encapsulated with amaranth derivatized starches: studies on the propagation “in vitro”. Bioprocess Biosyst Eng 38:329–339

    Article  PubMed  Google Scholar 

  • Rogério S, Neiva K, Lidia MF (2014) Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. Isrn Microbiol 2014:135675

    Google Scholar 

  • Rosas-García NM (2006) Laboratory and field tests of spray-dried and granular formulations of a Bacillus thuringiensis strain with insecticidal activity against the sugarcane borer. Pest Manag Sci 62:855–861

    Article  PubMed  Google Scholar 

  • Sanchis V, Gohar M, Chaufaux J, Arantes O, Meier A, Agaisse H, Cayley J, Lereclus D (1999) Development and field performance of a broad spectrum non-viable asporogenic recombinant strain of B. thuringiensis with greater potency and UV resistance. Appl Environ Microbiol 65:4032–4039

    CAS  PubMed  PubMed Central  Google Scholar 

  • SAS Institute (2003) SAS System (Version 9.1) for Windows. SAS Institute, Cary, NC

  • Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101(3):514–525

    Article  CAS  PubMed  Google Scholar 

  • Shen HJ, Shi H, Ma K, Xie M, Tang LL, Shen S, Li B, Wang XS, Jin Y (2013) Polyelectrolyte capsules packaging BSA gels for pH-controlled drug loading and release and their antitumor activity. Acta Biomater 9:6123–6133

    Article  CAS  PubMed  Google Scholar 

  • Shenoy DB, Antipov AA, Sukhorukov GB, Möhwald H (2003) Layer-by-layer engineering of biocompatible, decomposable core-shell structures. Biomacromolecules 4:265–272

    Article  CAS  PubMed  Google Scholar 

  • Shu SJ, Zhang XG, Wu ZM, Wang Z, Li CX (2010) Gradient cross-linked biodegradable polyelectrolyte nanocapsules for intracellular protein drug delivery. Biomaterials 31:6039–6049

    Article  CAS  PubMed  Google Scholar 

  • Sopena F, Maqueda C, Morillo E (2009) Controlled release formulations of herbicides based on micro-encapsulation. Ciencia E Investigación Agraria 36:27–42

    Article  Google Scholar 

  • Tamilselvan S, Jambulingam P, Manoharan V, Shanmugasundaram R, Vivekanandan G, Manonmani AM (2015) Fly ash based Bacillus thuringiensis var. israelensis formulation for use against Culex quinquefasciatus, the vector of filariasis in natural ecosystems. J Vector Borne Dis 52:193–200

    CAS  PubMed  Google Scholar 

  • Tripathy J, Raichur AM (2013) Designing carboxymethyl cellulose based layer-by-layer capsules as a carrier for protein delivery. Colloids Surf B Biointerfaces 101:487–492

    Article  CAS  PubMed  Google Scholar 

  • Van CS, Deshpande A, Hollander A, Duval N, Ticknor L, Layshock J, Gallegosgraves L, Omberg KM (2011) Persistence of Bacillus thuringiensis subsp. kurstaki in urban environments following spraying. Appl Environ Microbiol 77(22):7954–7961

    Article  Google Scholar 

  • Vilas-Bôas GT, Peruca AP, Arantes OM (2007) Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis. Can J Microbiol 53:673–687

    Article  PubMed  Google Scholar 

  • Yang WH, He KL, Zhang J, Guo SY (2012) pH-controlled Bacillus thuringiensis Cry1Ac protoxin loading and release from polyelectrolyte microcapsules. PLoS One 7:e45233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang TT, He MX, Gatehouse AMR, Wang ZY, Edwards MG, Li Q, He KL (2014) Inheritance patterns, dominance and cross-resistance of Cry1Ab-and Cry1Ac-selected Ostrinia furnacalis (Guenée). Toxins 6:2694–2707

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao QH, Li BY (2008) pH-controlled drug loading and release from biodegradable microcapsules. Nanomedicine 4(4):302–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao QH, Han BS, Wang ZH, Gao CY, Peng CH, Shen JC (2007) Hollow chitosan-alginate multilayer microcapsules as drug delivery vehicle: doxorubicin loading and in vitro and in vivo studies. Nanomedicine 3(1):63–74

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Zhang XG, Sun L, Zhang ZP, Li CX (2013) Biodegradable and redox-responsive chitosan/poly(L-aspartic acid) submicron capsules for transmucosal delivery of proteins and peptides. J Mater Sci Mater Med 24:931–939

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Ding YJ, Liu XQ, Wu YK, Ge L (2014) Highly magneto-responsive multilayer microcapsules for controlled release of insulin. Int J Pharm 475:17–24

    Article  CAS  PubMed  Google Scholar 

  • Zhou CM, Zheng QY, Peng Q, Du LX, Shu CL, Zhang J, Song FP (2014) Screening of cry-type promoters with strong activity and application in Cry protein encapsulation in a sigK mutant. Appl Microbiol Biotechnol 98:7901–7909

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of China (no. 31540088). The authors thank Dr. Didier Lereclus and Dr. Christina Nielsen-LeRoux from the Institut National de la Recherche Agronomique for their critical suggestions to the manuscript. We also appreciate the help provided by Dr. Fengshou Dong on sunlight inactivation experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kanglai He or Shuyuan Guo.

Ethics declarations

The manuscript does not contain experiments using mammals and does not contain studies on humans.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Xiaolin He and Zhongqin Sun made equal contributions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Sun, Z., He, K. et al. Biopolymer microencapsulations of Bacillus thuringiensis crystal preparations for increased stability and resistance to environmental stress. Appl Microbiol Biotechnol 101, 2779–2789 (2017). https://doi.org/10.1007/s00253-016-8070-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-8070-y

Keywords

Navigation