Skip to main content
Log in

Global physiological understanding and metabolic engineering of microorganisms based on omics studies

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Through metabolic engineering, scientists seek to modify the metabolic pathways of living organisms to facilitate optimized, efficient production of target biomolecules. During the past decade, we have seen notable improvements in biotechnology, many of which have been based on metabolically engineered microorganisms. Recent developments in the fields of functional genomics, transcriptomics, proteomics, and metabolomics have changed metabolic engineering strategies from the local pathway level to the whole system level. This article focuses on recent advances in the field of metabolic engineering, which have been powered by the combined approaches of the various “omics” that allow us to understand the microbial metabolism at a global scale and to develop more effectively redesigned metabolic pathways for the enhanced production of target bioproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson L, Seilhamer J (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18:533–537

    Article  PubMed  CAS  Google Scholar 

  • Antelmann H, Sapolsky R, Miller B, Ferrari E, Chotani G, Weyler W, Gaertner A, Hecker M (2004) Quantitative proteome profiling during the fermentation process of pleiotropic Bacillus subtilis mutants. Proteomics 4:2408–2424

    Article  PubMed  CAS  Google Scholar 

  • Baglioni P, Bini L, Liberatori S, Pallini V, Marri L (2003) Proteome analysis of Escherichia coli W3110 expressing an heterologous sigma factor. Proteomics 3:1060–1065

    Article  PubMed  CAS  Google Scholar 

  • Beckering CL, Steil L, Weber MH, Volker U, Marahiel MA (2002) Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J Bacteriol 184:6395–6402

    Article  PubMed  CAS  Google Scholar 

  • Beyer NH, Roepstorff P, Hammer K, Kilstrup M (2003) Proteome analysis of the purine stimulon from Lactococcus lactis. Proteomics 3:786–797

    Article  PubMed  CAS  Google Scholar 

  • Brocklehurst KR, Morby AP (2000) Metal-ion tolerance in Escherichia coli: analysis of transcriptional profiles by gene-array technology. Microbiology 146:2277–2282

    PubMed  CAS  Google Scholar 

  • Champion KM, Nishihara JC, Joly JC, Arnott D (2001) Similarity of the Escherichia coli proteome upon completion of different biopharmaceutical fermentation processes. Proteomics 1:1133–1148

    Article  PubMed  CAS  Google Scholar 

  • Champion KM, Nishihara JC, Aldor IS, Moreno GT, Andersen D, Stults KL, Vanderlaan M (2003a) Comparison of the Escherichia coli proteomes for recombinant human growth hormone producing and nonproducing fermentations. Proteomics 3:1365–1373

    Article  PubMed  CAS  Google Scholar 

  • Champion MM, Campbell CS, Siegele DA, Russell DH, Hu JC (2003b) Proteome analysis of Escherichia coli K-12 by two-dimensional native-state chromatography and MALDI-MS. Mol Microbiol 47:383–396

    Article  PubMed  CAS  Google Scholar 

  • Choe LH, Lee KH (2003) Quantitative and qualitative measure of intralaboratory two-dimensional protein gel reproducibility and the effects of sample preparation, sample load, and image analysis. Electrophoresis 24:3500–3507

    Article  PubMed  CAS  Google Scholar 

  • Choe LH, Chen W, Lee KH (1999) Proteome analysis of factor for inversion stimulation (Fis) overproduction in Escherichia coli. Electrophoresis 20:798–805

    Article  PubMed  CAS  Google Scholar 

  • Choi JH, Lee SJ, Lee SJ, Lee SY (2003) Enhanced production of insulin-like growth factor I fusion protein in Escherichia coli by coexpression of the down-regulated genes identified by transcriptome profiling. Appl Environ Microbiol 69:4737–4742

    Article  PubMed  CAS  Google Scholar 

  • Christensen B, Nielsen J (1999) Isotopomer analysis using GC-MS. Metab Eng 1(4):282–290

    Article  PubMed  CAS  Google Scholar 

  • Corbin RW, Paliy O, Yang F, Shabanowitz J, Platt M, Lyons CE Jr, Root K, McAuliffe J, Jordan MI, Kustu S, Soupene E, Hunt DF (2003) Toward a protein profile of Escherichia coli: comparison to its transcription profile. Proc Natl Acad Sci U S A 100:9232–9237

    Article  PubMed  CAS  Google Scholar 

  • Courcelle J, Khodursky A, Peter B, Brown PO, Hanawalt PC (2001) Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158:41–64

    PubMed  CAS  Google Scholar 

  • Delneri D, Brancia FL, Oliver SG (2001) Towards a truly integrative biology through the functional genomics of yeast. Curr Opin Biotechnol 12:87–91

    Article  PubMed  CAS  Google Scholar 

  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    Article  PubMed  CAS  Google Scholar 

  • Gill RT, Valdes JJ, Bentley WE (2000) A comparative study of global stress gene regulation in response to overexpression of recombinant proteins in Escherichia coli. Metab Eng 2:178–189

    Article  PubMed  CAS  Google Scholar 

  • Gill RT, DeLisa MP, Valdes JJ, Bentley WE (2001) Genomic analysis of high-cell-density recombinant Escherichia coli fermentation and “cell conditioning” for improved recombinant protein yield. Biotechnol Bioeng 72:85–95

    Article  PubMed  CAS  Google Scholar 

  • Glanemann C, Loos A, Gorret N, Willis LB, O'Brien XM, Lessard PA, Sinskey AJ (2003) Disparity between changes in mRNA abundance and enzyme activity in Corynebacterium glutamicum: implications for DNA microarray analysis. Appl Microbiol Biotechnol 61:61–68

    PubMed  CAS  Google Scholar 

  • Griffin TJ, Han DK, Gygi SP, Rist B, Lee H, Aebersold R, Parker KC (2001a) Toward a high-throughput approach to quantitative proteomic analysis: expression-dependent protein identification by mass spectrometry. J Am Soc Mass Spectrom 12:1238–1246

    Article  PubMed  CAS  Google Scholar 

  • Griffin TJ, Gygi SP, Rist B, Aebersold R, Loboda A, Jilkine A, Ens W, Standing KG (2001b) Quantitative proteomic analysis using a MALDI quadrupole time-of-flight mass spectrometer. Anal Chem 73:978–986

    Article  PubMed  CAS  Google Scholar 

  • Griffin TJ, Gygi SP, Ideker T, Rist B, Eng J, Hood L, Aebersold R (2002) Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol Cell Proteomics 1:323–333

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Aebersold R (2000) Mass spectrometry and proteomics. Curr Opin Chem Biol 4:489–494

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999a) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed  CAS  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999b) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Rist B, Griffin TJ, Eng J, Aebersold R (2002) Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J Proteome Res 1:47–54

    Article  PubMed  CAS  Google Scholar 

  • Han MJ, Yoon SS, Lee SY (2001) Proteome analysis of metabolically engineered Escherichia coli producing poly(3-hydroxybutyrate). J Bacteriol 183:301–308

    Article  PubMed  CAS  Google Scholar 

  • Han MJ, Jeong KJ, Yoo JS, Lee SY (2003) Engineering Escherichia coli for increased productivity of serine-rich proteins based on proteome profiling. Appl Environ Microbiol 69:5772–5781

    Article  PubMed  CAS  Google Scholar 

  • Han MJ, Park SJ, Park TJ, Lee SY (2004) Roles and applications of small heat shock proteins in the production of recombinant proteins in Escherichia coli. Biotechnol Bioeng 88:426–436

    Article  PubMed  CAS  Google Scholar 

  • Heim S, Ferrer M, Heuer H, Regenhardt D, Nimtz M, Timmis KN (2003) Proteome reference map of Pseudomonas putida strain KT2440 for genome expression profiling: distinct responses of KT2440 and Pseudomonas aeruginosa strain PAO1 to iron deprivation and a new form of superoxide dismutase. Environ Microbiol 5:1257–1269

    Article  PubMed  CAS  Google Scholar 

  • Helmann JD, Wu MF, Kobel PA, Gamo FJ, Wilson M, Morshedi MM, Navre M, Paddon C (2001) Global transcriptional response of Bacillus subtilis to heat shock. J Bacteriol 183:7318–7328

    Article  PubMed  CAS  Google Scholar 

  • Helmann JD, Wu MF, Gaballa A, Kobel PA, Morshedi MM, Fawcett P, Paddon C (2003) The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J Bacteriol 185:243–253

    Article  PubMed  CAS  Google Scholar 

  • Hong SH, Park SJ, Moon SY, Park JP, Lee SY (2003) In silico prediction and validation of the importance of the Entner–Doudoroff pathway in poly(3-hydroxybutyrate) production by metabolically engineered Escherichia coli. Biotechnol Bioeng 83:854–863

    Article  PubMed  CAS  Google Scholar 

  • Hottes AK, Meewan M, Yang D, Arana N, Romero P, McAdams HH, Stephens C (2004) Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media. J Bacteriol 186:1448–1461

    Article  PubMed  CAS  Google Scholar 

  • Jurgen B, Hanschke R, Sarvas M, Hecker M, Schweder T (2001) Proteome and transcriptome based analysis of Bacillus subtilis cells overproducing an insoluble heterologous protein. Appl Microbiol Biotechnol 55:326–332

    Article  PubMed  CAS  Google Scholar 

  • Kelleher JK (2001) Flux estimation using isotopic tracers: common ground for metabolic physiology and metabolic engineering. Metab Eng 3:100–110

    Article  PubMed  CAS  Google Scholar 

  • Khil PP, Camerini-Otero RD (2002) Over 1000 genes are involved in the DNA damage response of Escherichia coli. Mol Microbiol 44:89–105

    Article  PubMed  CAS  Google Scholar 

  • Krömer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186(6):1769–1784

    Article  PubMed  CAS  Google Scholar 

  • Kumar JK, Tabor S, Richardson CC (2004) Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli. Proc Natl Acad Sci U S A 101:3759–3764

    Article  PubMed  CAS  Google Scholar 

  • Lai EM, Nair U, Phadke ND, Maddock JR (2004) Proteomic screening and identification of differentially distributed membrane proteins in Escherichia coli. Mol Microbiol 52:1029–1044

    Article  PubMed  CAS  Google Scholar 

  • Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14:98–105

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Papoutsakis ET (1999) Metabolic engineering. Dekker, New York

    Google Scholar 

  • Lee H, Griffin TJ, Gygi SP, Rist B, Aebersold R (2002) Development of a multiplexed microcapillary liquid chromatography system for high-throughput proteome analysis. Anal Chem 74:4353–4360

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Lee DE, Lee BU, Kim HS (2003a) Global analyses of transcriptomes and proteomes of a parent strain and an L-threonine-overproducing mutant strain. J Bacteriol 185:5442–5451

    Article  PubMed  CAS  Google Scholar 

  • Lee PS, Shaw LB, Choe LH, Mehra A, Hatzimanikatis V, Lee KH (2003b) Insights into the relation between mRNA and protein expression patterns: II. Experimental observations in Escherichia coli. Biotechnol Bioeng 84:834–841

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Lee DY, Kim TY (2005) Systems biotechnology for strain improvement. Trends Biotechnol 23:331–379

    Article  PubMed  CAS  Google Scholar 

  • Len AC, Harty DW, Jacques NA (2004) Proteome analysis of Streptococcus mutans metabolic phenotype during acid tolerance. Microbiology 150:1353–1366

    Article  PubMed  CAS  Google Scholar 

  • Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates JR III (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17:676–682

    Article  PubMed  CAS  Google Scholar 

  • Loos A, Glanemann C, Willis LB, O'Brien XM, Lessard PA, Gerstmeir R, Guillouet S, Sinskey AJ (2001) Development and validation of Corynebacterium DNA microarrays. Appl Environ Microbiol 67:2310–2318

    Article  PubMed  CAS  Google Scholar 

  • Mader U, Homuth G, Scharf C, Buttner K, Bode R, Hecker M (2002) Transcriptome and proteome analysis of Bacillus subtilis gene expression modulated by amino acid availability. J Bacteriol 184:4288–4295

    Article  PubMed  CAS  Google Scholar 

  • Maurer LM, Yohannes E, Bondurant SS, Radmacher M, Slonczewski JL (2005) pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol 187:304–319

    Article  PubMed  CAS  Google Scholar 

  • Mehra A, Lee KH, Hatzimanikatis V (2003) Insights into the relation between mRNA and protein expression patterns: I. theoretical considerations. Biotechnol Bioeng 84:822–833

    Article  PubMed  CAS  Google Scholar 

  • Oh MK, Liao JC (2000a) DNA microarray detection of metabolic responses to protein overproduction in Escherichia coli. Metab Eng 2:201–209

    Article  PubMed  CAS  Google Scholar 

  • Oh MK, Liao JC (2000b) Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli. Biotechnol Prog 16:278–286

    Article  PubMed  CAS  Google Scholar 

  • Oh MK, Rohlin L, Kao KC, Liao JC (2002) Global expression profiling of acetate-grown Escherichia coli. J Biol Chem 277:13175–13183

    Article  PubMed  CAS  Google Scholar 

  • Oshima T, Aiba H, Masuda Y, Kanaya S, Sugiura M, Wanner BL, Mori H, Mizuno T (2002) Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol 46:281–291

    Article  PubMed  CAS  Google Scholar 

  • Palma M, DeLuca D, Worgall S, Quadri LE (2004) Transcriptome analysis of the response of Pseudomonas aeruginosa to hydrogen peroxide. J Bacteriol 186:248–252

    Article  PubMed  CAS  Google Scholar 

  • Peng L, Shimizu K (2003) Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement. Appl Microbiol Biotechnol 61:163–178

    PubMed  CAS  Google Scholar 

  • Petersohn A, Brigulla M, Haas S, Hoheisel JD, Volker U, Hecker M (2001) Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183:5617–5631

    Article  PubMed  CAS  Google Scholar 

  • Pferdeort VA, Wood TK, Reardon KF (2003) Proteomic changes in Escherichia coli TG1 after metabolic engineering for enhanced trichloroethene biodegradation. Proteomics 3:1066–1069

    Article  PubMed  CAS  Google Scholar 

  • Phadtare S, Kato I, Inouye M (2002) DNA microarray analysis of the expression profile of Escherichia coli in response to treatment with 4,5-dihydroxy-2-cyclopenten-1-one. J Bacteriol 184:6725–6729

    Article  PubMed  CAS  Google Scholar 

  • Phelps TJ, Palumbo AV, Beliaev AS (2002) Metabolomics and microarrays for improved understanding of phenotypic characteristics controlled by both genomics and environmental constraints. Curr Opin Biotechnol 13:20–24

    Article  PubMed  CAS  Google Scholar 

  • Polen T, Rittmann D, Wendisch VF, Sahm H (2003) DNA microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate. Appl Environ Microbiol 69:1759–1774

    Article  PubMed  CAS  Google Scholar 

  • Richmond CS, Glasner JD, Mau R, Jin H, Blattner FR (1999) Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res 27:3821–3835

    Article  PubMed  CAS  Google Scholar 

  • Ruberg S, Tian ZX, Krol E, Linke B, Meyer F, Wang Y, Puhler A, Weidner S, Becker A (2003) Construction and validation of a Sinorhizobium meliloti whole genome DNA microarray: genome-wide profiling of osmoadaptive gene expression. J Biotechnol 106:255–268

    Article  PubMed  CAS  Google Scholar 

  • Schmidt K, Carlsen M, Nielsen J, Villadsen J (1997) Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol Bioeng 55(6):831–840

    Article  CAS  Google Scholar 

  • Schweder T, Hecker M (2004) Monitoring of stress responses. Adv Biochem Eng Biotechnol 89:47–71

    PubMed  CAS  Google Scholar 

  • Steil L, Hoffmann T, Budde I, Volker U, Bremer E (2003) Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity. J Bacteriol 185:6358–6370

    Article  PubMed  CAS  Google Scholar 

  • Tao H, Bausch C, Richmond C, Blattner FR, Conway T (1999) Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J Bacteriol 181:6425–6440

    PubMed  CAS  Google Scholar 

  • Tjaden B, Saxena RM, Stolyar S, Haynor DR, Kolker E, Rosenow C (2002) Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. Nucleic Acids Res 30:3732–3738

    Article  PubMed  CAS  Google Scholar 

  • Tomas CA, Beamish J, Papoutsakis ET (2004) Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J Bacteriol 186:2006–2018

    Article  PubMed  CAS  Google Scholar 

  • Tucker DL, Tucker N, Conway T (2002) Gene expression profiling of the pH response in Escherichia coli. J Bacteriol 184:6551–6558

    Article  PubMed  CAS  Google Scholar 

  • Tummala SB, Junne SG, Paredes CJ, Papoutsakis ET (2003) Transcriptional analysis of product-concentration driven changes in cellular programs of recombinant Clostridium acetobutylicum strains. Biotechnol Bioeng 84:842–854

    Article  PubMed  CAS  Google Scholar 

  • Vido K, Le Bars D, Mistou MY, Anglade P, Gruss A, Gaudu P (2004) Proteome analyses of heme-dependent respiration in Lactococcus lactis: involvement of the proteolytic system. J Bacteriol 186:1648–1657

    Article  PubMed  CAS  Google Scholar 

  • Vollmer M, Nagele E, Horth P (2003) Differential proteome analysis: two-dimensional nano-LC/MS of E. coli proteome grown on different carbon sources. J Biomol Tech 14:128–135

    PubMed  Google Scholar 

  • Wang W, Sun J, Hartlep M, Deckwer WD, Zeng AP (2003) Combined use of proteomic analysis and enzyme activity assays for metabolic pathway analysis of glycerol fermentation by Klebsiella pneumoniae. Biotechnol Bioeng 83:525–536

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Lee JM, Richmond C, Blattner FR, Rafalski JA, LaRossa RA (2001) High-density microarray-mediated gene expression profiling of Escherichia coli. J Bacteriol 183:545–556

    Article  PubMed  CAS  Google Scholar 

  • Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3:195–206

    Article  PubMed  CAS  Google Scholar 

  • Wittmann C, Heinzle E (2001) Modeling and experimental design for metabolic flux analysis of lysine-producing Corynebacteria by mass spectrometry. Metab Eng 3(2):173–191

    Article  PubMed  CAS  Google Scholar 

  • Yohannes E, Barnhart DM, Slonczewski JL (2004) pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. J Bacteriol 186:192–199

    Article  PubMed  CAS  Google Scholar 

  • Yoon SH, Han MJ, Lee SY, Jeong KJ, Yoo JS (2003) Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol Bioeng 81:753–767

    Article  PubMed  CAS  Google Scholar 

  • Zheng M, Wang X, Templeton LJ, Smulski DR, LaRossa RA, Storz G (2001) DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183:4562–4570

    Article  PubMed  CAS  Google Scholar 

  • Zimmer DP, Soupene E, Lee HL, Wendisch VF, Khodursky AB, Peter BJ, Bender RA, Kustu S (2000) Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc Natl Acad Sci U S A 97:14674–14679

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our work described in this paper was supported by the Korean Systems Biology Research Program (M10309020000-03B5002-00000) of the Ministry of Science and Technology and by the BK21 project. Further supports by LG Chem Chair Professorship, KOSEF through the CUPS, Microsoft, and IBM-SUR program are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. J. Park or S. Y. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S.J., Lee, S.Y., Cho, J. et al. Global physiological understanding and metabolic engineering of microorganisms based on omics studies. Appl Microbiol Biotechnol 68, 567–579 (2005). https://doi.org/10.1007/s00253-005-0081-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0081-z

Keywords

Navigation