Skip to main content
Log in

Catalytic activity of lignin peroxidase and partition of veratryl alcohol in AOT/isooctane/toluene/water reverse micelles

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The activity of lignin peroxidase (LiP) and the partition of its optimum substrate veratryl alcohol (VA) in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane/toluene/water reverse micelles were studied in this paper to understand the microheterogeneous effect of the medium on the catalytic properties of LiP hosted in the reverse micelle. Results showed that LiP from Phanerochaete chrysosporium could express its activity in the reverse micelles, but its activity depended, to a great extent, on the composition of the reverse micelles. Optimum activity occurred at a molar ratio of water to AOT (ω0) of 11, a pH value of 3.6, and a volume ratio of isooctane to toluene of 7–9. Under optimum conditions, the half-life of LiP was circa 12 h. The dependence of LiP activity on the volume fraction of water in the medium (θ), at a constant ω0 value of 11, indicated that VA was mainly solubilized in the pseudophase of the reverse micelle. Based on the pseudobiphasic model and the corresponding kinetic method, a linear line can be obtained in a plot of apparent Michaelis constant of VA vs θ, and the partition coefficient of VA between the pseudophase and the organic solvent phase was determined to be 35.8, which was higher than that (22.3) between bulk water and the corresponding mixed organic solvent. H2O2 inhibited LiP at concentrations higher than 80 μM; this concentration value seems to be different from that in aqueous solution (about 3 mM). The differences mentioned above should be ascribed to the microheterogeneity and the interface of the AOT reverse micelle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrade SLA, Brondino CD, Kamenskaya EO, Levashov AV, Moura JJG (2003) Kinetic behavior of Desulfovibrio gigas aldehyde oxidoreductase encapsulated in reverse micelles. Biochem Biophys Res Commun 308:73–78

    Article  CAS  Google Scholar 

  • Andrade SM, Carvalho TI, Viseu MI, Costa SMB (2004) Conformational changes of β-lactoglobulin in sodium bis(2-ethylhexyl) sulfosuccinate reverse micelles. A fluorescence and CD study. Eur J Biochem 271:734–744

    Article  CAS  Google Scholar 

  • Barr DP, Aust SD (1994) Mechanism white rot fungi use to degrade pollutants. Environ Sci Technol 28(2):78A–87A

    Article  CAS  Google Scholar 

  • Bru R, Sanchez-Ferrer A, Garcia-Carmona F (1990) The effect of substrate partition on the kinetics of enzymes acting in reversed micelles. Biochem J 268:679–684

    Article  CAS  Google Scholar 

  • Bru R, Sanchez-Ferrer A, Garcia-Carmona F (1995) Kinetic models in reverse micelles. Biochem J 310:721–739

    Article  CAS  Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158

    Article  CAS  Google Scholar 

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436

    Article  CAS  Google Scholar 

  • Cameron MD, Timofeevski S, Aust SD (2000) Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl Microbiol Biotechnol 54(6):751–758

    Article  CAS  Google Scholar 

  • Carvalho CML, Cabral JMS (2000) Reverse micelles as reaction media for lipases. Biochimie 82(11):1063–1085

    Article  CAS  Google Scholar 

  • Chung N, Aust SD (1995) Veratryl alcohol-mediated indirect oxidation of phenol by lignin peroxidase. Arch Biochem Biophys 316:733–737

    Article  CAS  Google Scholar 

  • Dickinson M, Fletchert PDI (1989) Enzymes in organic solvents. Enzyme Microb Technol 11:55–56

    Article  CAS  Google Scholar 

  • Glumoff T, Harvey PJ, Molinari S, Goble M, Frank G, Palmer JM, Smit JD, Leisola MS (1990) Lignin peroxidase from Phanerochaete chrysosporium. Molecular and kinetic characterization of isozymes. Eur J Biochem 187:515–520

    Article  CAS  Google Scholar 

  • Guha S, Jaffe PR (1998) Biodegradation kinetics of phenanthrene partitioned into the micellar phase of non-ionic surfactants. Environ Sci Technol 30:605–611

    Article  Google Scholar 

  • Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:16948–16952

    CAS  PubMed  Google Scholar 

  • Hammel KE, Gai WZ, Green B, Moen MA (1992) Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:1832–1838

    Article  CAS  Google Scholar 

  • Harvey PJ, Schoemaker HE, Palmer JM (1986) Veratryl alcohol as a mediator and the role of radical cations in lignin biodegradation by Phanerochaete chrysosporium. FEBS Lett 195:242–246

    Article  CAS  Google Scholar 

  • Huang XR, Lu XM, Song SF, Sun DJ, Qu YB, Gao PJ (2001) Steady-state kinetic study on the oxidation of veratryl alcohol catalyzed by ligninase in aqueous media containing nonionic surfactant. Acta Chimi Sin 59:1583–1586

    Google Scholar 

  • Huang X, Wang D, Liu C, Hu M, Qu Y, Gao P (2003) The roles of veratryl alcohol and nonionic surfactant in the oxidation of phenolic compounds by lignin peroxidase. Biochem Biophys Res Commun 311:491–494

    Article  CAS  Google Scholar 

  • Johjima T, Wariishi H, Tanaka H (2002) Veratryl alcohol binding sites of lignin peroxidase from Phanerochaete chrysosporium. J Mol Catal B Enzym 17(2):49–57

    Article  CAS  Google Scholar 

  • Joshi DK, Gold MH (1996) Oxidation of dimethoxylated aromatic compounds by lignin peroxidase from Phanerochaete chrysosporium. Eur J Biochem 237:45–57

    Article  CAS  Google Scholar 

  • Kersten PJ, Kalyanaraman B, Hammel KE, Reinhammar B, Kirk TK (1990) Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem J 268:475–480

    Article  CAS  Google Scholar 

  • Khmelnitsky YL, Neverova IN, Polyakov VI, Grinberg VY, Levashov AV, Martinek K (1990) Kinetic theory of enzymatic reactions in reverse micellar systems. Applications of the pseudophase approach for partitioning substrates. Eur J Biochem 190:155–159

    Article  CAS  Google Scholar 

  • Li YZ, Gao PJ, Wang ZN (1994) Nutritional regulation of synthesis of lignin peroxidase by Phanerochaete chrysosporium ME-446. Acta Microbiol Sin 34:29–36

    CAS  Google Scholar 

  • Luisi PL (1985) Enzyme hosted in reversed micelles in hydrocarbon solution. Angew Chem 24(6):439–450

    Article  Google Scholar 

  • Mabrouk PA (1995) The use of nonaqueous media to probe biochemically significant enzyme intermediates: the generation and stabilization of horseradish peroxidase compound II in neat benzene solution at room temperature. J Am Chem Soc 117(8):2141–2146

    Article  CAS  Google Scholar 

  • Martinek K, Levashov AV, Klyachko NL, Khmelnitski YL, Berezin IV (1986) Micellar enzymology. Eur J Biochem 155:453–468

    Article  CAS  Google Scholar 

  • Michizoe J, Okazaki S, Goto M, Furusaki S (2001) Catalytic properties of lignin peroxidase ALiP-P3 hosted in reversed micelles. Biochem Eng J 8:129–134

    Article  CAS  Google Scholar 

  • Orlich B, Schomaecker R (2001) Enzyme catalysis in reverse micelles. Adv Biochem Eng Biotechnol 75:185–208

    Google Scholar 

  • Paszczynski A, Crawford RL (1995) Potential for bioremediation of xenobiotic compounds by the white rot fungus Phanerochaete chrysosporium. Biotechnol Prog 11:368–379

    Article  CAS  Google Scholar 

  • Reddy GVB, Gold MH (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology 146:405–413

    Article  CAS  Google Scholar 

  • Sanglard D, Leisola MSA, Fiechter A (1986) Role of extracellular ligninases in biodegradation of benzo(a)pyrene by Phanerochaete chrysosporium. Enzyme Microb Technol 8:209–212

    Article  CAS  Google Scholar 

  • Sayadi S, Ellouz R (1995) Roles of lignin peroxidase and manganese peroxidase from Phanerochaete chrysosporium in the decolourization of olive mill wastewaters. Appl Environ Microbiol 61:1098–1103

    Article  CAS  Google Scholar 

  • Schick Zapanta L, Tien M (1997) The roles of veratryl alcohol and oxalate in fungal lignin degradation. J Biotechnol 53:93–102

    Article  CAS  Google Scholar 

  • ten Have R, de Thouars RG, Swarts HJ, Field JA (1999) Veratryl alcohol-mediated oxidation of isoeugenyl acetate by lignin peroxidase. Eur J Biochem 265:1008–1014

    Article  Google Scholar 

  • Tien M, Ma D (1997) Oxidation of 4-methoxymandelic acid by lignin peroxidase. Mediation by veratryl alcohol. J Biol Chem 272:8912–8917

    Article  CAS  Google Scholar 

  • Tien M, Kirk TK, Bull C, Fee JA (1986) Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerocheate chrysosporium Burds. J Biol Chem 261(4):1687–1693

    CAS  PubMed  Google Scholar 

  • Valli K, Wariishi H, Gold MH (1990) Oxidation of monomethoxylated aromatic compounds by lignin peroxidase: role of veratryl alcohol in lignin biodegradation. Biochemistry 29(37):8535–8539

    Article  CAS  Google Scholar 

  • Vazquez-Duhalt R, Westlake DWS, Fedorak PM (1994) Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents. Appl Environ Microb 60:459–466

    Article  CAS  Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    Article  CAS  Google Scholar 

  • Zheng ZM, Obbard JP (2002) Oxidation of polycyclic aromatic hydrocarbon (PAH) by the white rot fungus Phanerochaete chrysosporium. Enzyme Microb Technol 31:3–9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Interdisciplinary Science Foundation of Shandong University, the Middle-aged and Youthful Excellent Scientists Encouragement Foundation of Shandong Province, the Natural Science Foundation of Shandong Province, and the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xirong Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Huang, X., Li, Y. et al. Catalytic activity of lignin peroxidase and partition of veratryl alcohol in AOT/isooctane/toluene/water reverse micelles. Appl Microbiol Biotechnol 70, 315–320 (2006). https://doi.org/10.1007/s00253-005-0048-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0048-0

Keywords

Navigation