Skip to main content

Anaerobic Carbon Metabolism of Saccharomyces cerevisiae

  • Chapter
  • First Online:
Molecular Mechanisms in Yeast Carbon Metabolism
  • 2790 Accesses

Abstract

The yeast Saccharomyces cerevisiae is a facultative anaerobic organism able to grow in the absence of oxygen. Oxygenation is one of the major costs in biotechnical production processes, and the anaerobic performance of S. cerevisiae is thus attractive in the development of low-cost bioprocesses. Understanding of the carbon metabolism of S. cerevisiae in the lack of oxygen is crucial also for the optimization of oxygenated large-scale processes. Transient oxygen-depleted conditions and oxygen gradients commonly appear in large bioreactors and in high-cell density cultures due to imperfect mixing. In addition of being an industrial production organism, S. cerevisiae is an attractive model organism for studying the cell physiology and regulation under the conditions of different energetic challenges such as anaerobiosis. The observations and understanding can be translated to higher eukaryotes since many of the regulatory mechanisms are conserved within Eukaryota. It is also fascinating that there is a similarity between the anaerobic organization of the carbon metabolism of S. cerevisiae and the ‘low ATP yield-high rate’ energy metabolism, which is a regulatory choice and competitive advantage behind the behaviour of not only S. cerevisiae but also, for example, cancer cells. In this review, the response of the carbon metabolism of S. cerevisiae to the lack of oxygen will be discussed in the light of comprehensive data on multiple levels of cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramova N, Sertil O, Mehta S et al (2001) Reciprocal regulation of anaerobic and aerobic cell wall mannoprotein gene expression in Saccharomyces cerevisiae. J Bacteriol 183:2881–2887

    CAS  PubMed Central  PubMed  Google Scholar 

  • Albertyn J, Hohmann S, Thevelein JM et al (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14:4135–4144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ansell R, Granath K, Hohmann S et al (1997) The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J16:2179–2187

    Google Scholar 

  • Bafunno V, Giancaspero TA, Brizio C et al (2004) Riboflavinuptake and FAD synthesis in Saccharomyces cerevisiae mitochondria: involvement of the Flx1p carrier in FAD export. J Biol Chem 279:95–102

    CAS  PubMed  Google Scholar 

  • Bakker B, Bro C, Kötter P et al (2000) The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol 182:4730–4737

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bakker B, Overkamp K, van Maris A et al (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol 25:15–37

    CAS  Google Scholar 

  • Becerra M, Lombardía-Ferreira LJ, Hauser NC et al (2002) The yeast transcriptome in aerobic and hypoxic conditions: effects of hap1, rox1, rox3 and srb10 deletions. Mol Microbiol 43(3):545–555

    CAS  PubMed  Google Scholar 

  • Bergdahl B, Heer D, Sauer U et al (2012) Dynamic metabolomics differentiates between carbon and energy starvation in recombinant Saccharomyces cerevisiae fermenting xylose. Biotechnol Biofuels 5:34

    CAS  PubMed Central  PubMed  Google Scholar 

  • Björkqvist S, Ansell R, Adler L et al (1997) Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisae. Appl Environ Microbiol 63:128–132

    PubMed Central  PubMed  Google Scholar 

  • Blank LM, Sauer U (2004) TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology 150:1085–1093

    CAS  PubMed  Google Scholar 

  • Blank LM, Lehmbeck F, Sauer U (2005) Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res 5(6–7):545–558

    CAS  PubMed  Google Scholar 

  • Boles E, de Jong-Gubbels P, Pronk JT (1998) Identification and characterization of MAE1, the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme. J Bacteriol 180:2875–2882

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breitkreutz A, Choi H, Sharom JR et al (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328(5981):1043–1046

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruckmann A, Hensbergen PJ, Balog CI et al (2009) Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cells. J Proteomics 71(6):662–669

    CAS  PubMed  Google Scholar 

  • Butow RA, Avadhani NG (2004) Mitochondrial signaling: the retrograde response. Mol Cell 14(1):1–15

    CAS  PubMed  Google Scholar 

  • Cadière A, Galeote V, Dequin S (2010) The Saccharomyces cerevisiae zinc factor protein Stb5p is required as a basal regulator of the pentose phosphate pathway. FEMS Yeast Res 10(7):819–827

    PubMed  Google Scholar 

  • Camarasa C, Grivet JP, Dequin S (2003) Investigation by 13C-NMR and tricarboxylic acid (TCA) deletion mutant analysis of pathways for succinate formation in Saccharomyces cerevisiae during anaerobic fermentation. Microbiology 149:2669–2678

    CAS  PubMed  Google Scholar 

  • Camarasa C, Faucet V, Dequin S (2007) Role in anaerobiosis of the isoenzymes for Saccharomyces cerevisiae fumarate reductase encoded by OSM1 and FRDS1. Yeast 24(5):391–401

    CAS  PubMed  Google Scholar 

  • Chen Y, Siewers V, Nielsen J (2012) Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae. PLoS ONE 7(8):e42475

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daran-Lapujade P, Jansen ML, Daran JM et al (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem 279(10):9125–9138

    CAS  PubMed  Google Scholar 

  • Daran-Lapujade P, Rossell S, van Gulik WM et al (2007) The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels. Proc Natl Acad Sci U S A 104(40):15753–15758

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davies BS, Rine J (2006) A role for sterol levels in oxygen sensing in Saccharomyces cerevisiae. Genetics 174(1):191–201

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Groot MJ, Daran-Lapujade P, van Breukelen B et al (2007) Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes. Microbiology 153:3864–3878

    PubMed  Google Scholar 

  • de Smidt O, du Preez JC, Albertyn J (2012) Molecular and physiological aspects of alcohol dehydrogenases in the ethanol metabolism of Saccharomyces cerevisiae. FEMS Yeast Res 12(1):33–47

    PubMed  Google Scholar 

  • Dobson PD, Smallbone K, Jameson D et al (2010) Further developments towards a genome-scale metabolic model of yeast. BMC Syst Biol 4:145

    PubMed Central  PubMed  Google Scholar 

  • Duntze W, Neumann D, Gancedo JM et al (1969) Studies on the regulation and localization of the glyoxylate cycle enzymes in Saccharomyces cerevisiae. Eur J Biochem 10(1):83–89

    CAS  PubMed  Google Scholar 

  • Eriksson P, André L, Ansell R et al (1995) Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1 Mol. Microbiol 17:95–107

    CAS  Google Scholar 

  • Fendt SM, Oliveira AP, Christen S (2010) Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast. Mol Syst Biol 6:432

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fiaux J, Ìakar PZ, Sonderegger M et al (2003) Metabolic-Flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot Cell 2:170–180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flikweert MT, van Der Zanden L, Janssen WM et al (1996) Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 12(3):247–257

    CAS  PubMed  Google Scholar 

  • Forsburg SL, Guarente L (1989) Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev 3:1166–1178

    CAS  PubMed  Google Scholar 

  • Franzén CJ (2003) Metabolic flux analysis of RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae. Yeast 20(2):117–132

    PubMed  Google Scholar 

  • Frick O, Wittmann C (2005) Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microb Cell Fact 4:30–46

    PubMed Central  PubMed  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol 62:334–361

    CAS  Google Scholar 

  • Gojković Z, Knecht W, Zameitat E et al (2004) Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts. Mol Genet Genomics 271(4):387–393

    PubMed  Google Scholar 

  • Gombert AK, Moreira dos Santos M, Christensen B et al (2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol 183(4):1441–1451

    Google Scholar 

  • Grabowska D, Chelstowska A (2003) The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity. J Biol Chem 278:13984–13988

    CAS  PubMed  Google Scholar 

  • Grüning NM, Rinnerthaler M, Bluemlein K, Mülleder M, Wamelink MM, Lehrach H, Jakobs C, Breitenbach M, Ralser M (2011) Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells. Cell Metab 14(3):415–427

    PubMed Central  PubMed  Google Scholar 

  • Hagman A, Säll T, Compagno C et al (2013) Yeast “Make-Accumulate-Consume” life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS ONE 8(7):e68734

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hauf J, Zimmermann FK, Müller S (2000) Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzyme Microb Technol 26(9–10):688–698

    CAS  PubMed  Google Scholar 

  • Heavner BD, Smallbone K, Barker B, Mendes P, Walker LP (2012) Yeast 5—an expanded reconstruction of the Saccharomyces cerevisiae metabolic network. BMC Syst Biol 6:55

    PubMed Central  PubMed  Google Scholar 

  • Helbig AO, de Groot MJ, van Gestel RA et al (2009) A three-way proteomics strategy allows differential analysis of yeast mitochondrial membrane protein complexes under anaerobic and aerobic conditions. Proteomics 9(20):4787–4798

    CAS  PubMed  Google Scholar 

  • Herrgård MJ, Swainston N, Dobson P et al (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 26(10):1155–1160

    PubMed  Google Scholar 

  • Hickman MJ, Winston F (2007) Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor. Mol Cell Biol 27(21):7414–7424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hinnebusch AG, Fink GR (1983) Positive regulation in the general amino acid control of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 80(17):5374–8

    Google Scholar 

  • Hon T, Lee HC, Hu Z et al (2005) The heme activator protein Hap1 represses transcription by a heme-independent mechanism in Saccharomyces cerevisiae. Genetics 169(3):1343–1352

    Google Scholar 

  • Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    CAS  PubMed  Google Scholar 

  • Jacquier N, Schneiter R (2012) Mechanisms of sterol uptake and transport in yeast. J Steroid Biochem Mol Biol 129(1–2):70–78

    CAS  PubMed  Google Scholar 

  • Jamieson DJ (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14:1511–1527

    CAS  PubMed  Google Scholar 

  • Jouhten P, Rintala E, Huuskonen A et al (2008) Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A. BMC Syst Biol 2:60

    PubMed Central  PubMed  Google Scholar 

  • Jouhten P, Wiebe M, Penttilä M (2012) Dynamic flux balance analysis of the metabolism of Saccharomyces cerevisiae during the shift from fully respirative or respirofermentative metabolic states to anaerobiosis. FEBS J 279(18):3338–3354

    CAS  PubMed  Google Scholar 

  • Klimacek M, Krahulec S, Sauer U et al (2010) Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis. Appl Environ Microbiol 76:7566–7574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kwast KE, Lai L-C, Menda N et al (2002) Genomic analyses of anaerobically induced genes in Saccharomyces cerevisiae: functional roles of Rox1 and other factors in mediating the anoxic response. J Bacteriol 184:250–265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lai LC, Kosorukoff AL, Burke PV et al (2006) Metabolic-state-dependent remodeling of the transcriptome in response to anoxia and subsequent reoxygenation in Saccharomyces cerevisiae. Eukaryot Cell 5:1468–1489

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lange HC (2002) Quantitative physiology of saccharomyces cerevisiae using metabolic network analysis. Ph.D. thesis, Technical University Delft, The Netherlands

    Google Scholar 

  • Larochelle M, Drouin S, Robert F et al (2006) Oxidative stress-activated zinc cluster protein Stb5 has dual activator/ repressor functions required for pentose phosphate pathway regulation and NADPH production. Mol Cell Biol 26:6690–6701

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Z, Butow RA (1999) A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Mol Cell Biol 19:6720–6728

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Z, Österlund T, Hou J et al (2013) Anaerobic α-amylase production and secretion with fumarate as the final electron acceptor in Saccharomyces cerevisiae. Appl Environ Microbiol 79(9):2962–2967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Llobell A, Lopez-Ruiz A, Peinado J et al (1988) Glutathione reductase directly mediates the stimulation of yeast glucose-6-phosphate dehydrogenase by GSSG. Biochem J 249:293–296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lowry CV, Zitomer RS (1984) Oxygen regulation of anaerobic and aerobic genes mediated by a common factor in yeast. Proc Natl Acad Sci 81:6129–6133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luyten K, Albertyn J, Skibbe WF et al (1995) Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14:1360–1371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maaheimo H, Fiaux J, Cakar ZP et al (2001) Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional (13)C labeling of common amino acids. Eur J Biochem 268(8):2464–2479

    CAS  PubMed  Google Scholar 

  • Machado A, Nuñez de Castro I, Mayor F (1975) Isocitrate dehydrogenases and oxoglutarate dehydrogenase activities of baker’s yeast grown in a variety of hypoxic conditions. Mol Cell Biochem 6(2):93–100

    Google Scholar 

  • McCammon MT, Epstein CB, Przybyla-Zawislak B et al (2003) Global transcription analysis of krebs tricarboxylic acid cycle mutants reveals an alternating pattern of gene expression and effects on hypoxic and oxidative genes. Mol Biol Cell 14:958–972

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mensonides FIC, Bakker BM, Cremazy F (2013) A new regulatory principle for in vivo biochemistry: Pleiotropic low affinity regulation by the adenine nucleotides—Illustrated for the glycolytic enzymes of Saccharomyces cerevisiae. FEBS Lett 587(2860):2867

    Google Scholar 

  • Minard KI, McAlister-Henn L (1999) Dependence of peroxisomal β-Oxidation of cytosolic sources of NADPH. J Biol Chem 274:3402–3406

    CAS  PubMed  Google Scholar 

  • Minard KI, Mc Alister-Henn L (2005) Sources of NADPH in yeast vary with carbon source. J Biol Chem 280(48):39890–39896

    CAS  PubMed  Google Scholar 

  • Møller K, Olsson L, Piskur J (2001) Ability for anaerobic growth is not sufficient for development of the petite phenotype in Saccharomyces kluyveri. J Bacteriol 183(8):2485–2489

    PubMed  Google Scholar 

  • Murcott TH, Gutfreund H, Muirhead H (1992) The cooperative binding of fructose-1,6-bisphosphate to yeast pyruvate kinase. EMBO J 11(11):3811–3814

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagy M, Lacroute F, Thomas D (1992) Divergent evolution of pyrimidine biosynthesis between anaerobic and aerobic yeasts. Proc Natl Acad Sci 89(19):8966–8970

    CAS  PubMed Central  PubMed  Google Scholar 

  • Natarajan K, Meyer MR, Jackson BM et al (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21(13):4347–4368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nissen TL, Schulze U, Nielsen J et al (1997) Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143:203–218

    CAS  PubMed  Google Scholar 

  • Nogae I, Johnston M (1990) Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase. Gene 96(2):161–169

    CAS  PubMed  Google Scholar 

  • Norbeck J, Pahlman AK, Akhtar N et al (1996) Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae. J Biol Chem 271:13875–13881

    CAS  PubMed  Google Scholar 

  • Oliveira AP, Ludwig C, Picotti P et al (2012) Regulation of yeast central metabolism by enzyme phosphorylation. Mol Syst Biol 8:623

    PubMed Central  PubMed  Google Scholar 

  • Oura E, Haarasilta S, Londesborough J (1980) Carbon dioxide fixation by baker’s yeast in a variety of growth conditions. J Gen Microbiol 118:51–58

    CAS  Google Scholar 

  • Pahlman AK, Granath K, Ansell R et al (2001) The yeast glycerol 3-phosphatases gpp1p and gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J Biol Chem 276:3555–3563

    CAS  PubMed  Google Scholar 

  • Piper MDW, Daran-Lapujade P, Bro C et al (2002) Reproducibility of oligonucleotide microarray transcriptome analyses. J Biol Chem 277:37001–37008

    CAS  PubMed  Google Scholar 

  • Rigoulet M, Aguilaniu H, Avéret N et al (2004) Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Mol Cell Biochem 256–257(1–2):73–81

    PubMed  Google Scholar 

  • Rintala E, Wiebe MG, Tamminen A et al (2008) Transcription of hexose transporters of Saccharomyces cerevisiae is affected by change in oxygen provision. BMC Microbiol 8:53

    PubMed Central  PubMed  Google Scholar 

  • Rintala E, Toivari M, Pitkänen JP et al (2009) Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae. BMC Genom 10:461

    Google Scholar 

  • Rintala E, Jouhten P, Toivari M et al (2011) Transcriptional responses of Saccharomyces cerevisiae to shift from respiratory and respirofermentative to fully fermentative metabolism. OMICS Biology 15:461–476

    CAS  Google Scholar 

  • Rizzi M, Baltes M, Theobald U et al (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae II Mathematical model. Biotechnol Bioeng 55:592–608

    CAS  PubMed  Google Scholar 

  • Rosenfeld E, Beauvoit B (1998) Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces cerevisiae. Yeast 20:1115–1144

    Google Scholar 

  • Runquist D, Hahn-Hägerdal B, Bettiga M (2009) Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microb Cell Fact 8:49

    PubMed Central  PubMed  Google Scholar 

  • Russell DW, Smith M, Williamson VM et al (1983) Nucleotide sequence of the yeast alcohol dehydrogenase II gene. J Biol Chem 258(4):2674–2682

    CAS  PubMed  Google Scholar 

  • Saint-Prix F, Bonquist L, Dequin S (2004) Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: the NADP 1-dependent Ald6p and Ald5p isoforms play a major role in acetate formation. Microbiology 150:2209–2220

    CAS  PubMed  Google Scholar 

  • Schaaff I, Heinisch J, Zimmermann FK (1989) Overproduction of glycolytic enzymes in yeast. Yeast 5:285–290

    CAS  PubMed  Google Scholar 

  • Sertil O, Kapoor R, Cohen BD et al (2003) Synergistic repression of anaerobic genes by Mot3 and Rox1 in Saccharomyces cerevisiae. Nucleic Acids Res 31:5831–5837

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi NQ, Jeffries TW (1998) Anaerobic growth and improved fermentation of Pichia stipitis bearing a URA1 gene from Saccharomyces cerevisiae. Appl Microbiol Biotechnol 50(3):339–345

    CAS  PubMed  Google Scholar 

  • Sickmann A, Reinders J, Wagner Y et al (2003) The proteome of Saccharomyces cerevisiae mitochondria. PNAS 100:13207–13212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sinensky M (1974) Homeoviscous adaptation a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci 71:522–525

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smits P, Hauf J, Müller S et al (2000) Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Yeast 16(14):1325–1334

    Google Scholar 

  • Snoek IS, Steensma HY (2006) Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome. FEMS Yeast Res 6(3):393–403

    CAS  PubMed  Google Scholar 

  • Swiegers J, Dippenaar N, Pretorius I et al (2001) Carnitine-dependent metabolic activities in Saccharomyces cerevisiae: three carnitine acetyltranferases are essential in a carnitine dependent strain. Yeast 18:585–595

    CAS  PubMed  Google Scholar 

  • Tai SL, Boer VM, Daran-Lapujade P, Walsh MC et al (2005) Two-dimensional transcriptome analysis in chemostat cultures combinatorial effects of oxygen availability and macronutrient limitation in Saccharomyces cerevisiae. J Biol Chem 280:437–447

    CAS  PubMed  Google Scholar 

  • ter Linde JJ, Liang H, Davis RW et al (1999) Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae. J Bacteriol 181:7409–7413

    PubMed Central  PubMed  Google Scholar 

  • ter Linde JJ, Steensma HY (2002) A microarray-assisted screen for potential Hap1 and Rox1 target genes in Saccharomyces cerevisiae. Yeast 19:825–840

    PubMed  Google Scholar 

  • Toivari MH, Aristidou A, Ruohonen L et al (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3:236–349

    CAS  PubMed  Google Scholar 

  • Tsoi BM, Beckhouse AG, Gelling CL et al (2009) Essential role of one-carbon metabolism and Gcn4p and Bas1p transcriptional regulators during adaptation to anaerobic growth of Saccharomyces cerevisiae. J Biol Chem 284(17):11205–11215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tzagoloff A, Jang J, Glerum DM et al (1996) FLX1 codes for a carrier protein involved in maintaining a proper balance of flavin nucleotides in yeast mitochondria. J Biol Chem 271:7392–7397

    CAS  PubMed  Google Scholar 

  • van den Berg MA, de Jong-Gubbels P, Kortland CJ et al (1996) The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J Biol Chem 271:28953–28959

    PubMed  Google Scholar 

  • van den Berg MA, Steensma HY (1995) ACS2, a Saccharomyces cerevisiae gene encoding acetyl-coenzyme a synthetase, essential for growth on glucose. Eur J Biochem 231:704–713

    PubMed  Google Scholar 

  • van den Brink J, Daran-Lapujade P, Pronk JT et al (2008a) New insights into the Saccharomyces cerevisiae fermentation switch: dynamic transcriptional response to anaerobicity and glucose-excess. BMC Genom 9:100

    Google Scholar 

  • van den Brink J, Canelas AB, van Gulik WM et al (2008b) Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism. Appl Environ Microbiol 74(18):5710–5723

    PubMed Central  PubMed  Google Scholar 

  • van Hoek P, van Dijken JP, Pronk JT (1998) Effect of specific growth rate on fermentative capacity of baker’s yeast. Appl Environ Microbiol 64(11):4226–4233

    PubMed Central  PubMed  Google Scholar 

  • van Hoek P, van Dijken JP, Pronk JT (2000) Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae. Enzyme Microb Technol 26:724–736

    PubMed  Google Scholar 

  • van Roermund CWT, Elgersma Y, Singh N et al (1995) The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J 14:3480–3486

    PubMed Central  PubMed  Google Scholar 

  • van Roermund C, Hettema E, van der Berg M et al (1999) Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p. EMBO J 18:5843–5852

    PubMed Central  PubMed  Google Scholar 

  • Vaseghi S, Baumeister A, Rizzi M et al (1999) In vivo Dynamics of the Pentose Phosphate Pathway in Saccharomyces cerevisiae. Metab Eng 1:128–140

    CAS  PubMed  Google Scholar 

  • Verduyn C, Postma E, Scheffers WA et al (1990a) Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136:395–403

    CAS  PubMed  Google Scholar 

  • Verduyn C, Postma E, Scheffers WA et al (1990b) Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136:405–412

    CAS  PubMed  Google Scholar 

  • Verduyn C, Stouthamer AH, Scheffers WA et al (1991) A theoretical evaluation of growth yields of yeasts. Antonie Van Leeuwenhoek 59:49–63

    CAS  PubMed  Google Scholar 

  • Verduyn C, Postma E, Scheffers WA et al (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8(7):501–517

    CAS  PubMed  Google Scholar 

  • Villas-Bôas SG, Moxley JF, Akesson M et al (2005) High-throughput metabolic state analysis: the missing link in integrated functional genomics of yeasts. Biochem J 388:669–677

    PubMed Central  PubMed  Google Scholar 

  • Visser D, van Zuylen GA, van Dam JC et al (2004) Analysis of in vivo kinetics of glycolysis in aerobic Saccharomyces cerevisiae by application of glucose and ethanol pulses. Biotechnol Bioeng 88(2):157–167

    CAS  PubMed  Google Scholar 

  • Visser W, Baan AA van der, Batenburg-van der Vegte W et al (1994) Involvement of mitochondria in the assimilatory metabolism of anaerobic Saccharomyces cerevisiae cultures. Microbiology 140:3039–3046

    Google Scholar 

  • Visser W, Scheffers A, Batenburg-van der Vegte WH et al (1990) Oxygen requirements of yeasts. Appl Environ Microbiol 56(12):3785–3792

    Google Scholar 

  • Weusthuis RA, Visser W, Pronk JT et al (1994) Effects of oxygen limitation on sugar metabolism in yeasts—a continuous-culture study of the Kluyver effect. Microbiology 140:703–715

    CAS  PubMed  Google Scholar 

  • Wiebe MG, Rintala E, Tamminen A et al (2008) Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. FEMS Yeast Res 8(1):140–154

    CAS  PubMed  Google Scholar 

  • Wu L, van Dam J, Schipper D et al (2006) Short-term metabolome dynamics and carbon, electron, and ATP balances in chemostat-grown Saccharomyces cerevisiae CEN.PK 113-7D following a glucose pulse. Appl Environ Microbiol 72(5):3566–3577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young ET, Pilgrim D (1985) Isolation and DNA sequence of ADH3, a nuclear gene encoding the mitochondrial isozyme of alcohol dehydrogenase in Saccharomyces cerevisiae. Mol Cell Biol 5(11):3024–3034

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Guarente L (1994) HAP1 is nuclear but is bound to a cellular factor in the absence of heme. J Biol Chem 269:14643–14647

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Jouhten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jouhten, P., Penttilä, M. (2014). Anaerobic Carbon Metabolism of Saccharomyces cerevisiae . In: Piškur, J., Compagno, C. (eds) Molecular Mechanisms in Yeast Carbon Metabolism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55013-3_3

Download citation

Publish with us

Policies and ethics