Skip to main content
Log in

Development of an improved procedure for isolation and purification of exopolysaccharides produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2483

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A method was developed for the isolation and purification of exopolysaccharide (EPS) produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2483 that can be adapted for industrial-scale operation. Hydrolyzed milk medium, which was ultrafiltered to remove molecular species larger than 2.5×105 Da, was found to be a suitable growth medium for the bacteria, which produced approximately 400 mg EPS/l . Optimal isolation of EPS was achieved using centrifugation, filtration and ethanol precipitation methods. Insoluble and soluble EPS fractions were obtained. The soluble fraction was purified using a series of ethanol precipitations to achieve approximately 98% (w/w) purity. This fraction consisted of galactose, glucose, rhamnose and mannose in the ratio of approximately 5:1:0.6:0.5, with traces of glucosamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbad-Andaloussi S, Talbaoui H, Marczak R, Bonaly R (1995) Isolation and characterization of exocellular polysaccharides produced by Bifidobacterium longum. Appl Microbiol Biotechnol 43:995–1000

    CAS  PubMed  Google Scholar 

  • van den Berg DJC, Robijn GW, Janssen AC, Giuseppin MLF, Vreeker R, Kamerling JP, Vliegenthart JFG, Ledeboer AM, Verrips CT (1995) Production of a novel extracellular polysaccharide by Lactobacillus sake O-1 and characterization of the polysaccharide. Appl Environ Microbiol 61:2840–2844

    Google Scholar 

  • Bouzar F, Cerning J, Desmazeaud M (1996) Exopolysaccharide production in milk by Lactobacillus delbrueckii ssp. bulgaricus CNRZ 1187 and by two colonial variants. J Dairy Sci 79:205–211

    CAS  Google Scholar 

  • Bubb WA, Urashima T, Fujiwara R, Shinnai T, Ariga H (1997) Structural characterisation of the exocellular polysaccharide produced by Streptococcus thermophilus OR 901. Carbohydr Res 301:41–50

    Article  CAS  PubMed  Google Scholar 

  • van Calsteren MR, Pau-Roblot C, Begin A, Roy D (2002) structure determination of the exopolysaccharide produced by Lactobacillus rhamnosus strains Rw-9595m and R. Biochem J 363:7–17

    Article  PubMed  Google Scholar 

  • Cerning J (1990) Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Rev 87:113–130

    Article  CAS  Google Scholar 

  • Cerning J (1995) Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Lait 75:463–472

    CAS  Google Scholar 

  • Cerning J, Bouillanne C, Desmazeaud MJ, Landon M (1986) Isolation and characterization of exocellular polysaccharide produced by Lactobacillus bulgaricus. Biotechnol Lett 8:625–628

    CAS  Google Scholar 

  • Cerning J, Bouillanne C, Desmazeaud MJ, Landon M (1988) Exocellular polysaccharide production by Streptococcus thermophilus. Biotechnol Lett 10:255–260

    CAS  Google Scholar 

  • Christensen BE, Characklis WG (1990) Physical and chemical properties of biofilms. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York

    Google Scholar 

  • Degeest BDVL (1999) Indication that the nitrogen source influences both amount and size of exopolysaccharides produced by Streptococcus thermophilus LY03 and modelling of the bacterial growth and exopolysaccharide production in a complex medium. Appl Environ Microbiol 65:2863–2870

    CAS  PubMed  Google Scholar 

  • Degeest B, Janssens B, De Vuyst L (2001) Exopolysaccharide (Eps) biosynthesis by Lactobacillus sakei 0–1: production kinetics, enzyme activities and Eps yields. J Appl Microbiol 91:470–477

    Article  CAS  PubMed  Google Scholar 

  • De Vuyst L, Vanderveken F, Van de Ven S, Degeest B (1998) Production by and isolation exopolysaccharides from Streptococcus thermophilus grown in a milk medium and evidence for their growth-associated biosynthesis. J Appl Microbiol 84:1059–1068

    Article  PubMed  Google Scholar 

  • Doco T, Wieruszeski JM, Fournet B (1990) Structure of an exocellular polysaccharide produced by Streptococcus thermophilus. Carbohydr Res 198:313–322

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Gilles JK, Hamilton PA, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  • Dupont I, Roy D, Lapointe G (2000) Comparison of exopolysaccharide production by strains of Lactobacillus rhamnosus and Lactobacillus paracasei grown in chemically defined medium and milk. J Ind Microbiol Biotechnol 24:251–255

    Article  CAS  Google Scholar 

  • Emerson D, Ghiorse WC (1993) Role of disulphide bonds in maintaining the structure integrity of the sheath of Leptothrix discophora SP-6. J Bacteriol 175:7819–7827

    CAS  PubMed  Google Scholar 

  • Faber EJ, Zoon P, Kamerling JP, Vliegenthart JFG (1998) The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures. Carbohydr Res 310:269–276

    Article  CAS  PubMed  Google Scholar 

  • Gamar-Nourani L, Blondeau K, Simonet J-M (1997) Physiological approach to extracellular polysaccharide production by Lactobacillus rhamnosus strain C83. J Appl Microbiol 83:281–287

    Article  Google Scholar 

  • Gamar-Nourani L, Blondeau K, Simonet JW (1998) Influence of culture conditions on exopolysaccharide production by Lactobacillus rhamnosus strain C83. J Appl Microbiol 85:664–672

    Article  CAS  Google Scholar 

  • Garcia-Garibay M, Marshall VME (1991) Polymer production by Lactobacillus-delbrueckii ssp. bulgaricus. J Appl Bacteriol 70:325–328

    Google Scholar 

  • Grobben GJ, Smith MR, Sikkema J, de Bont JAM (1996) Influence of fructose and glucose on the production of exopolysaccharides and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772. Appl Microbiol Biotechnol 46:279–284

    Article  CAS  Google Scholar 

  • Grobben GJ, van Casteren WHM, Schols HA, Oosterveld A, Sala G, Smith MR, Sikkema J, de Bon JAM (1997) Analysis of the exopolysaccharides produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 grown in continuous culture on glucose and fructose. Appl Microbiol Biotechnol 48:516–521

    Article  CAS  Google Scholar 

  • Gruter M, Leeflang BR, Kuiper J, Kamerling JP, Vliegenthart JFG (1993) Structural characterisation of the exopolysaccharide produced by Lactobacillus delbrueckii ssp. bulgaricus RR grown in skimmed milk. Carbohydr Res 239:209–226

    Article  CAS  PubMed  Google Scholar 

  • Kimmel SA, Roberts RF (1998) Development of a growth medium suitable for exopolysaccharide production by Lactobacillus delbrueckii ssp. bulgaricus RR. Int J Food Microbiol 40:87–92

    Article  CAS  PubMed  Google Scholar 

  • Kojic M, Vujcic M, Banina A, Cocconcelli P, Cerning J, Topisirovic L (1992) Analysis of exopolysaccharide production by Lactobacillus casei CG11, isolated from cheese. Appl Environ Microbiol 58:4086–4088

    CAS  PubMed  Google Scholar 

  • Lemoine J, Chirat F, Wieruszeski J-M, Strecker G, Favre N, Neeser J-R (1997) Structural characterization of the exocellular polysaccharides produced by Streptococcus thermophilus SFi39 and SFi12. Appl Environ Microbiol 63(9):3512–3518

    CAS  PubMed  Google Scholar 

  • Looijesteijn PJ, Hugenholtz J (1999) Uncoupling of growth and exopolysaccharide production by Lactococcus lactis subsp cremoris NIZO B40 and optimization of its synthesis. J Biosci Bioeng 88:178–182

    Article  CAS  Google Scholar 

  • Low D, Ahlgren JA, Horne D, McMahon DJ, Oberg CJ, Broadbent JR (1998) Role of Streptococcus thermophilus MR-1C capsular exopolysaccharide in cheese moisture retention. Appl Environ Microbiol 64:2147–2151

    CAS  PubMed  Google Scholar 

  • Manca de Nadra MC, Strasser de Saad AM, Pesce de Ruiz Holgado AA, Oliver G (1985) Extracellular polysaccharide production by Lactobacillus bulgaricus CRl-420. Milchwissenschaft 40:409–411

    Google Scholar 

  • Mozzi F, de Giori Graciela S, Oliver G, de Valdez Graciela F (1996) Exopolysaccharide production by Lactobacillus casei under controlled pH. Biotechnol Lett 18:435–439

    CAS  Google Scholar 

  • Nakajima H, Toyoda S, Toba T, Itoh T, Mukai T, Kitazawa H, Adachi S (1990) A novel phosphopolysaccharide from slime-forming lactococcus lactis ssp. cremoris SBT 0495. J Dairy Sci 73:1472–1477

    CAS  Google Scholar 

  • Navarini L, Abatangelo A, Bertocchi C, Conti E, Bosco M, Picotti F (2001) Isolation and characterization of the exopolysaccharide produced by Streptococcus thermophilus SFi20. Int J Biol Macromol 28:219–226

    Article  CAS  PubMed  Google Scholar 

  • Nielsen PH, Jahn A (1999) Extraction of EPS. In: Wingender J, Neu TR, Feemming HC (eds) Microbial extracellular polymeric substances: characterization, structure and function. Springer, Berlin Heidelberg New York, pp 49–72

    Google Scholar 

  • Racine M, Dumont J, Champagne CP, Morin A (1991) Production and characterization of the polysaccharide from Propionibacterium acidi propionici on whey-based media. J Appl Bacteriol 71:233–238

    CAS  Google Scholar 

  • Ricciardi A, Parente E, Crudele MA, Zanetti F, Scolari G, Mannazzu I (2002) Exopolysaccharide production by Streptococcus thermophilus Sy: production and preliminary characterization of the polymer. J Appl Microbiol 92:297–306

    Article  CAS  PubMed  Google Scholar 

  • Robijn GW, Gutierrez Gallego R, van den Berg DJC, Haas H, Kamerling JP, Vliegenthart JFG (1996) Structural characterization of the exopolysaccharide produced by Lactobacillus acidophilus LMG9433. Carbohydr Res 288:203–218

    Article  CAS  PubMed  Google Scholar 

  • Ruas-Madiedo P, Hugenholtz J, Zoon P (2002) An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int Dairy J 12:163–171

    Article  CAS  Google Scholar 

  • Toba T, Nakajima H, Tobitani A, Adachi S (1990) Scanning electron microscopic and texture studies on characteristic consistency of Nordic ropy sour milk. Int J Food Microbiol 11:313–320

    Article  CAS  PubMed  Google Scholar 

  • Tuinier R, Zoon P, Olieman C, Stuart MAC, Fleer GJ, de Kruif CG (1999) Isolation and physical characterization of an exocellular polysaccharide. Biopolymers 49:1–9

    Article  CAS  PubMed  Google Scholar 

  • Vanhaverbeke C, Bosso C, Colin-Morel P, Gey C, Gamar-Nourani L, Blondeau K, Simonet JM, Heyraud A (1998) Structure of an extracellular polysaccharide produced by Lactobacillus rhamnosus strain C83. Carbohydr Res 314:211–220

    Article  CAS  PubMed  Google Scholar 

  • Welman AD, Maddox IS, Archer RH (2003) Screening and selection of exopolysaccharide-producing strains of Lactobacillus delbrueckii subsp. bulgaricus. J Appl Microbiol 95:1200–1206

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Murosaki S, Yamauchi R, Kato K, Sone Y (1994) Structural study on an exocellular polysaccharide produced by Lactobacillus helveticus TY1-2. Carbohydr Res 261:67–78

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Huttunen E, Staaf M, Widmalm G, Tenhu H (1999) Separation, purification and characterisation of extracellular polysaccharides produced by slime-forming Lactococcus lactis ssp. cremoris strains. Int Dairy J 9:631–638

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Fonterra Co-operative Ltd and the New Zealand Foundation for Research, Science and Technology through the Technology for Business Growth program. The authors would like to acknowledge the help provided by Dr Paul McJarrow for making available the use of the Dionex electrochemical detector. The authors would like to express their gratitude to Suzanne Basset, Gary Radford and Warwick Johnson for their technical assistance. We would also like to thank Professor Richard Archer, Associate Professor Ian Maddox and Dr Vaughn Crow for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelvin K. T. Goh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goh, K.K.T., Haisman, D.R. & Singh, H. Development of an improved procedure for isolation and purification of exopolysaccharides produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2483. Appl Microbiol Biotechnol 67, 202–208 (2005). https://doi.org/10.1007/s00253-004-1739-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1739-7

Keywords

Navigation