Skip to main content

Detection, Isolation, and Purification of Bifidobacterial Exopolysaccharides

  • Protocol
  • First Online:
Bifidobacteria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2278))

  • 1270 Accesses

Abstract

This chapter describes some of the available methods to assess EPS production in bifidobacteria, being largely based on those developed for the same purpose for members of the lactic acid bacteria group. The first step is detection of putative EPS-producing bifidobacteria based on a mucoid and/or ropy phenotype. Next, a basic procedure is described for the isolation of the glycan polymer based on the release from bifidobacterial cells grown and collected from the surface of agar-MRSc (“crude EPS”), followed by a purification procedure intended to remove other bacterial macromolecules (DNA and proteinaceous material) to generate “purified EPS.” Finally, several methods used for quantification and physical–chemical characterization of isolated/purified polysaccharide are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruas-Madiedo P (2014) Biosynthesis and bioactivity of exopolysaccharides produced by probiotic bacteria. In: Moreno FL, Sanz ML (eds) Food oligosaccharides. Production, analysis and bioactivity. John Wiley & Sons, West Sussex, pp 118–133

    Chapter  Google Scholar 

  2. Leroy F, De Vuyst L (2016) Advances in production and simplified methods for recovery and quantification of exopolysaccharides for applications in food and health. J Dairy Sci 99:3229–3238. https://doi.org/10.3168/jds.2015-9936

    Article  PubMed  CAS  Google Scholar 

  3. Zeidan AA, Poulsen VK, Janzen T, Buldo P, Derkx PMF, Øregaard G, Neves AR (2017) Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiol Rev 41:S168–S200. https://doi.org/10.1093/femsre/fux017

    Article  PubMed  Google Scholar 

  4. Hidalgo-Cantabrana C, Sánchez B, Milani C, Ventura M, Margolles A, Ruas-Madiedo P (2014) Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. Appl Environ Microbiol 80:9. https://doi.org/10.1128/AEM.02977-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Castro-Bravo N, Wells JM, Margolles A, Ruas-Madiedo P (2018) Interactions of surface exopolysaccharides from Bifidobacterium and Lactobacillus within the intestinal environment. Front Microbiol 9:2426. https://doi.org/10.3389/fmicb.2018.02426

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ferrario C, Milani C, Mancabelli L, Lugli GA, Duranti S, Mangifesta M, Viappiani A, Turroni F, Margolles A, Ruas-Madiedo P, van Sinderen D, Ventura M (2016) Modulation of the eps-ome transcription of bifidobacteria through simulation of human intestinal environment. FEMS Microbiol Ecol 92:fiw056. https://doi.org/10.1093/femsec/fiw056

    Article  PubMed  CAS  Google Scholar 

  7. Ruas-Madiedo P, Sánchez B, Hidalgo-Cantabrana C, Margolles A, Laws A (2012) Exopolysaccharides from lactic acid bacteria and bifidobacteria. In: Hui YH (ed) Handbook of animal-based fermented food and beverage technology, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton FL, pp 125–151

    Google Scholar 

  8. Ruas-Madiedo P, de los Reyes-Gavilán CG (2005) Methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci 88:843–856. https://doi.org/10.3168/jds.S0022-0302(05)72750-8

    Article  PubMed  CAS  Google Scholar 

  9. Castro-Bravo N, Sánchez B, Margolles A, Ruas-Madiedo P (2018) Biological activities and applications of bifidobacterial exopolysaccharides: from the bacteria and host perspective. In: Mattarelli P, Biavati B, Holzapfel WH, BJB W (eds) The bifidobacteria and related organisms. Biology, taxonomy and applications. Academic Press, Elsevier, London, pp 177–193

    Chapter  Google Scholar 

  10. Hidalgo-Cantabrana C, Ordoñez I, Ruas-Madiedo P, Margolles A (2015) Degenerated PCR primers for detecting putative priming glycosyltransferase genes in Bifidobacterium strains. Benef Microbes 6:553–562. https://doi.org/10.3920/BM2014.0046

    Article  PubMed  CAS  Google Scholar 

  11. Yan S, Zhao G, Liu X, Zhao J, Zhang H, Chen W (2017) Production of exopolysaccharide by Bifidobacterium longum isolated from elderly and infant feces and analysis of priming glycosyltransferase genes. RSC Adv 7:31736. https://doi.org/10.1039/c7ra03925e

    Article  CAS  Google Scholar 

  12. Hsu KL, Mahal LK (2006) A lectin microarray approach for the rapid analysis of bacterial glycans. Nat Protocols 1:543–549. https://doi.org/10.1038/nprot.2006.76

    Article  PubMed  CAS  Google Scholar 

  13. Yasuda E, Tateno H, Hirabarashi J, Iino T, Sako T (2011) Lectin microarray reveals binding profiles of Lactobacillus casei strains in a comprehensive analysis of bacterial cell aall polysaccharides. Appl Environ Microbio 77:4539–4546. https://doi.org/10.1128/AEM.00240-11

    Article  CAS  Google Scholar 

  14. Rühmann B, Schmid J, Sieber V (2015) High throughput exopolysaccharide screening platform: from strain cultivation to monosaccharide composition and carbohydrate fingerprinting in one day. Carbohydr Polym 122:212–220. https://doi.org/10.1016/j.carbpol.2014.12.021

    Article  PubMed  CAS  Google Scholar 

  15. Birch J, Van Calsteren MR, Pérez S, Svensson B (2019) The exopolysaccharide properties and structures database: EPS-DB. Application to bacterial exopolysaccharides. Carbohydr Polym 205:565–570. https://doi.org/10.1016/j.carbpol.2018.10.063

    Article  PubMed  CAS  Google Scholar 

  16. Ruas-Madiedo P, Tuinier R, Kanning M, Zoon P (2002) Role of exopolysaccharides produced by Lactococcus lactis subsp. cremoris on the viscosity of fermented milks. Int Dairy J 12:689–695. https://doi.org/10.1016/S0958-6946(01)00161-3

    Article  CAS  Google Scholar 

  17. Hidalgo-Cantabrana C, Lopez P, Gueimonde M, de los Reyes-Gavilan CG, Suarez A, Margolles A, Ruas-Madiedo P (2012) Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria. Probiotics Antimicrob Proteins 4:227–237. https://doi.org/10.1007/s12602-012-9110-2

    Article  PubMed  CAS  Google Scholar 

  18. Ruas-Madiedo P, Hugenholtz J, Zoon P (2002) An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int Dairy J 12:163–171. https://doi.org/10.1016/S0958-6946(01)00160-1

    Article  CAS  Google Scholar 

  19. Vaningelgem F, Zamfir M, Mozzi F, Adriany T, Vancanneyt M, Swings J, De Vuyst L (2004) Biodiversity of exopolysaccharides produced by Streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics. Appl Environ Microbiol 70:900–912. https://doi.org/10.1128/aem.70.2.900-912.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ruas-Madiedo P, Gueimonde M, Margolles A, de los Reyes-Gavilán CG, Salminen S (2006) Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus. J Food Prot 69:2011–2015. https://doi.org/10.4315/0362-028X-69.8.2011

    Article  PubMed  CAS  Google Scholar 

  21. Morris DL (1948) Quantitative determination of carbohydrates with Dreywood’s anthrone reagent. Science 107:254–255

    Google Scholar 

  22. Dubois M, Gillies K, Hamilton J, Reberes P, Smith F (1956) A colorimetric method for the determination of sugars. Anal Chem 28:349–56

    Google Scholar 

  23. Nikolic M, López P, Strahinic I, Suárez A, Kojic M, Fernández-García M, Topisirovic L, Golic N, Ruas-Madiedo P (2012) Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics. Int J Food Microbiol 158:155–162. https://doi.org/10.1016/j.ijfoodmicro.2012.07.015

    Article  PubMed  CAS  Google Scholar 

  24. Lynch KM, Zannini E, Coffey A, Arendt EK (2018) Lactic acid bacteria exopolysaccharides in foods and beverages: isolation, properties, characterization, and health benefits. Ann Rev Food Sci Technol 9:155–176. https://doi.org/10.1146/annurev-food-030117-012537

    Article  CAS  Google Scholar 

  25. van Hijum SAFT, Kralj S, Ozimek LK, Dijkhuizen L, van Geel-Schutten IGH (2006) Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 70:157–176. https://doi.org/10.1128/MMBR.70.1.157-176.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Milani C, Lugli GA, Duranti S, Turroni F, Bottacini F, Mangifesta M, Sanchez B, Viappiani A, Mancabelli L, Taminiau B, Delcenserie V, Barrangou R, Margolles A, van Sinderen D, Ventura M (2014) Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl Environ Microbiol 80:6290–6302. https://doi.org/10.1128/AEM.02308-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hidalgo-Cantabrana C, Sánchez B, Álvarez-Martín P, López P, Martínez-Álvarez N, Delley M, Martí M, Varela E, Suárez A, Antolín M, Guarner F, Berger B, Ruas-Madiedo P, Margolles AA (2015) A single mutation in the gene responsible for the mucoid phenotype of Bifidobacterium animalis subsp. lactis confers surface and functional characteristics. Appl Environ Microbiol 81:7960–7968. https://doi.org/10.1128/AEM.02095-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Castro-Bravo N, Hidalgo-Cantabrana C, Rodriguez-Carvajal MA, Ruas-Madiedo P, Margolles A (2017) Gene replacement and fluorescent labeling to study the functional role of exopolysaccharides in Bifidobacterium animalis subsp. lactis. Front Microbiol 8:1405. https://doi.org/10.3389/fmicb.2017.01405

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research on EPS from Bifidobacterium and LAB in our group has been in supported by long-term funding from the National Plans of Research, Development and Innovation (“I+D+i”) of the Spanish Ministry of Science (reference of the current one: RTI2018-096339-B-I00). The “I+D+i” Regional from Plan the Government of the “Principado de Asturias” also funds the research activities (period 2018–2020) of the MicroHealth group (reference IDI/2018/000236). Both projects are partially cofunded by the FEDER (European Regional Development Fund) program from the European Union. P. Ruas-Madiedo is grateful to the Ph.D. students that have worked or are still working on this topic during their doctoral Thesis, as well as to the excellent technical assistance of Isabel Cuesta for the chromatographic analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Ruas-Madiedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ruas-Madiedo, P. (2021). Detection, Isolation, and Purification of Bifidobacterial Exopolysaccharides. In: van Sinderen, D., Ventura, M. (eds) Bifidobacteria. Methods in Molecular Biology, vol 2278. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1274-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1274-3_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1273-6

  • Online ISBN: 978-1-0716-1274-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics