Skip to main content
Log in

Reductive dehalogenation of tetrachloroethylene by microorganisms: current knowledge and application strategies

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract.

Reductive anaerobic dehalogenation is a useful method for remediation of sites contaminated by chlorinated ethylenes, where hydrogen concentration plays the key role. Under anaerobic conditions, dehalogenating bacteria compete best against methanogenic consortia when the hydrogen level is low; and methanogenic consortia outplay dehalogenating bacteria when the hydrogen level is high. Thus, in an anaerobic mixed culture, efficient use of hydrogen for dehalogenation can be achieved by strategies that maintain hydrogen at a certain low concentration. However, due to the role of acetate, expected dehalogenating results cannot be obtained and unexpected methane formation can be encountered in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  • Agrawal A, Ferguson WJ, Gardner BO, Christ JA, Bandstra JZ, Tratnyek PG (2002) Effects of carbonate species on the kinetics of dechlorination of 1,1,1-trichloroethane by zero-valent iron. Environ Sci Technol 36:4326–4333

    Article  CAS  PubMed  Google Scholar 

  • Anthony C (1988) Bacterial energy transduction. Academic Press, London

  • Barrio-Lage G, Parson FZ, Nassar RS, Lorenzo PA (1986) Sequential dehalogenation of chlorinated ethenes. Environ Sci Technol 20:96–99

    CAS  Google Scholar 

  • Boone DR, Bryant MP (1980) Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626–632

    CAS  Google Scholar 

  • Burris DB, Campbell TJ, Manoranjan VS (1995) Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system. Environ Sci Technol 29:2850–2855

    CAS  Google Scholar 

  • Cabirol N, Jacob F, Perrier J, Fouillet B, Chambon P (1998) Complete degradation of high concentration of tetrachloroethylene by a methanogenic consortium in a fixed-bed reactor. J Biotechnol 62:133–141

    Article  CAS  Google Scholar 

  • Chapelle FH, Haack SK, Adriaens P, Henry MA, Bradley PM (1996) Comparison of E h and H2 measurements for delineating redox processes in a contaminated aquifer. Environ Sci Technol 30:3565–3569

    Article  CAS  Google Scholar 

  • Clark CJ, Rao PSC, Annable MD (2003) Degradation of perchloroethylene in cosolvent solutions by zero-valent iron. J Hazard Mater 96:65–78

    Article  CAS  PubMed  Google Scholar 

  • Distefano TD, Gossett JM, Zinder SH (1991) Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. Appl Environ Microbiol 57:2287–2292

    CAS  PubMed  Google Scholar 

  • Distefano TD, Gossett JM, Zinder SH (1992) Hydrogen as an electron donor for dechlorination of tetracholorethene by anaerobic mixed culture. Appl Environ Microbiol 58:3622–3629

    CAS  PubMed  Google Scholar 

  • Duhamel M, Wehr SD, Yu L, Rizvi H, Seepersad D, Dworatzek S, Cox EE, Edwards EA (2002) Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Res 36:4193–4202

    Article  CAS  PubMed  Google Scholar 

  • Enzien MV, Picardal FW, Hazen TC, Arnold RG, Fliermans CF (1994) Reductive dechlorination of trichloroethylene and tetrachloroethylene under aerobic conditions in a sediment column. Appl Environ Microbiol 60:2200–2204

    CAS  Google Scholar 

  • Fennell DE, Gossett JM, Zinder SH (1997) Comparison of butyric acid, ethanol, lactic acid and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene. Environ Sci Technol 31:918–926

    Article  CAS  Google Scholar 

  • Freedman D, Gossett JM (1989) Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol 55:2144–2151

    CAS  PubMed  Google Scholar 

  • Gander JW, Parkin GF, Scherer MM (2002) Kinetics of 1,1,1-trichloroethane transformation by iron sulfide and a methanogenic consortium. Environ Sci Technol 36:4540–4546

    Article  CAS  PubMed  Google Scholar 

  • Gao JW, Skeen RS, Hooker BS, Quesenberry RD (1997) Effects of several electron donors on tetrachloroethylene dechlorination in anaerobic soil microcosms. Water Res 31:2479–2486

    Article  CAS  Google Scholar 

  • Holliger C, Schraa G, Stams AJM, Zehnder AJB (1993) A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl Environ Microbiol 59:2991–2997

    CAS  PubMed  Google Scholar 

  • Hwang I, Batchelor B (2000) Reductive dechlorination of tetrachloroethylene by Fe(II) in cement slurries. Environ Sci Technol 23:5017–5022

    Article  Google Scholar 

  • Hwang I, Batchelor B (2001) Reductive dechlorination of tetrachloroethylene in soils by Fe(II)-based degradative solidification/stabilization. Environ Sci Technol 35:3792–3797

    Article  CAS  PubMed  Google Scholar 

  • Kao CM, Chen SC, Wang JY, Chen YL, Lee SZ (2003) Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies. Water Res 37:27–38

    Article  CAS  PubMed  Google Scholar 

  • Lampron KJ, Chiu PC, Cha DK (2001) Reductive dehalogenation of chlorinated ethenes with elemental iron: the role of microorganisms. Water Res 13:3077–3084

    Article  Google Scholar 

  • Lee T, Tokunaga T, Suyama A, Furukawa K (2001) Efficient dechlorination of tetrachloroethylene in soil slurry by combined use of an anaerobic Desulfitobacterium sp. strain Y-51 and zero-valent iron. J Biosci Bioeng 5:453–458

    Article  Google Scholar 

  • Lee WJ, Batchelor B (2003) Reductive capacity of natural reductants. Environ Sci Technol 37:535–541

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Phillips EJP (1987) Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl Environ Microbiol 53:2636–2641

    CAS  Google Scholar 

  • Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene, Environ Sci Technol 36:5106–5116

    Google Scholar 

  • Malina JF Jr, Pohland FG (1992) Design of anaerobic processes for the treatment of industrial and municipal wastes. Technomic Publishing, Lancaster, PA

  • Maymó-Gatell X, Chien Y, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571

    CAS  PubMed  Google Scholar 

  • McInerney MJ, Bryant MP, Hespell RB, Costerton JW (1981) Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41:1029–1039

    CAS  Google Scholar 

  • Pill KG, Kupillas GE, Picardal FW, Arnold RG (1991) Estimating the toxicity of chlorinated organic compounds using a multiparameter bacterial assay. Environ Toxicol Water Qual 6:271–291

    CAS  Google Scholar 

  • Rosner B, McCarty P, Spormann AM (1997) In vitro studies on reductive vinyl chloride dehalogenation by an anaerobic mixed culture. Appl Environ Microbiol 63:4139–4144

    CAS  Google Scholar 

  • Sharma PK, McCarty P (1996) Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2-dichloroethene. Appl Environ Microbiol 62:761–765

    CAS  Google Scholar 

  • Shim H, Ryoo D, Barbieri P, Wood K (2001) Aerobic degradation of mixtures of tetrachloroethylene, trichloroethylene, dichloroethylenes, and vinyl chloride by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Appl Microbiol Biotechnol 56:1–5

    CAS  PubMed  Google Scholar 

  • Smatlak CR, Gossett JM, Zinder SH (1996) Comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture. Environ Sci Technol 30:2850–2858

    Article  CAS  Google Scholar 

  • Stuart SL, Woods SL, Lemmon TL, Ingle JD Jr (1999) The effect of redox potential changes on reductive dechlorination of pentachlorophenol and the degradation of acetate by a mixed methanogenic culture. Biotechnol Bioeng 63:69–78

    Article  CAS  PubMed  Google Scholar 

  • Vogel TM, Criddle CS, McCarty P (1987) Transformation of halogenated aliphatic compounds. Environ Sci Technol 21:719–736

    Google Scholar 

  • Yang Y, McCarty P (1998) Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ Sci Technol 32:3591–3597

    Article  CAS  Google Scholar 

  • Zeikus JG (1977) The biology of methanogenic bacteria. Bacteriol Rev 41:514–541

    CAS  PubMed  Google Scholar 

  • Zinder SH, Gossett JM (1995) Reductive dechlorination of tetrachloroethene by a high rate anaerobic microbial consortium. Environ Health Perspect 103:5–7

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G. Reductive dehalogenation of tetrachloroethylene by microorganisms: current knowledge and application strategies. Appl Microbiol Biotechnol 63, 373–377 (2004). https://doi.org/10.1007/s00253-003-1367-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1367-7

Keywords

Navigation