Skip to main content
Log in

The constitutive AHSB4 promoter—a novel component of the Arxula adeninivorans-based expression platform

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An Arxula adeninivorans-AHSB4 gene, encoding histone H4, was isolated and characterized. The gene includes a coding sequence of 363 bp disrupted by a 51-bp intron, similar to the situation in other fungal H4 genes. The identity of the gene was confirmed by the high degree of homology of the derived amino acid sequence with that of other H4 histones. The gene is strongly and constitutively expressed, maintaining this expression profile under salt-stress conditions. The AHSB4 promoter was tested for suitability in heterologous gene expression using genes encoding the intracellular green fluorescent protein and the secreted human serum albumin (HSA) for assessment. Plasmids incorporating respective expression cassettes were used to transform the host strain A. adeninivorans LS3, which forms budding cells at 30 °C, and strain 135, which forms mycelia under these conditions. Transformants of both types were found to harbor a single copy of the heterologous DNA. Strong constitutive expression was observed during culture in salt-containing and salt-free media, as expected from the expression profile of AHSB4. In 200-ml shake-flask cultures, maximal HSA levels of 20 mg l−1 culture medium were achieved. This productivity could be increased to 50 mg l−1 in strains harboring two copies of the expression cassette. The AHSB4 promoter thus provides an attractive component for constitutive heterologous gene expression under salt-free and salt-stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2.
Fig. 3A, B.
Fig. 4A–C.
Fig. 5A, B.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  • Belshaw NJ, Haigh NP, Fish NM, Archer DB, Alcocer MJC (2002) Use of a histone H4 promoter to drive the expression of homologous and heterologous proteins by Penicillium funiculosum. Arch Microbiol Biotechnol 60:455–460

    Google Scholar 

  • Benard M, Pierron G (1999) Early activated replication origins within the cell cycle-regulated histone H4 genes in Physarum. Nucleic Acids Res 27:2091–2098

    Article  CAS  PubMed  Google Scholar 

  • Bilgin M, Dedeoglu D, Omirulleh S, Peres G, Engler D, Inze D, Dudits D, Feher A (1999) Merestem cell division and S-phase-dependent activity of wheat histone H4 promoter in transgenic maize plants. Plant Sci 143:33–44

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  CAS  PubMed  Google Scholar 

  • Davis E, Larkins BA, Knight RH (1972) Polysomes from peas. An improved method for their isolation in the absence of ribonuclease inhibitors. Plant Physiol 50:581–584

    Google Scholar 

  • Dohmen RJ, Strasser AM, Höner CB, Hollenberg CP (1991) An efficient transformation procedure enabling long term storage of competent cells of various yeast genera. Yeast 7:691–692

    CAS  PubMed  Google Scholar 

  • Gellissen G (2000) Heterologous protein production in methylotrophic yeasts. Appl Microbiol Biotechnol 54:741–750

    Google Scholar 

  • Gellissen G (2002) Hansenula polymorpha—biology and applications. Wiley-VCH, Weinheim

  • Gellissen G, Hollenberg CP (1997) Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis—a review. Gene 190:87–97

    CAS  PubMed  Google Scholar 

  • Gessner M, Raeder U (1994) A histone H4-promoter for expression of a phleomycin-resistance gene in Phanerochaete chrysosporium. Gene 142:237–241

    CAS  PubMed  Google Scholar 

  • Gienow U, Kunze G, Schauer F, Bode R, Hofemeister J (1990) The yeast genus Trichosporon spec. LS3; Molecular characterization of genomic complexity. Zbl Mikrobiol 145:3-12

    CAS  Google Scholar 

  • Gua Z, Sherman F (1995) 3´-end-forming signals of yeast mRNA. Mol Cell Biol 15:5983–5990

    CAS  PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of E. coli with plasmids. J Mol Biol 166:557–580

    CAS  PubMed  Google Scholar 

  • Hasslacher M, Ivessa AS, Paltauf F, Kohlwein SD (1993) Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipid metabolism. J Biol Chem 268:10946–10952

    CAS  PubMed  Google Scholar 

  • Hollenberg CP, Gellissen G (1997) Production of recombinant proteins by methylotrophic yeasts. Curr Opin Biotechnol 8:554–560

    CAS  PubMed  Google Scholar 

  • Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 15:61–68

    Article  Google Scholar 

  • Juretzek T, Le Dall MT, Mauersberger S, Gaillardin C, Barth G, Nicaud JM (2001) Vectors of gene expression and amplification in the yeast Yarrowia lipolytica. Yeast 18:97–113

    Article  CAS  PubMed  Google Scholar 

  • Kahn RW, Andersen BH, Brunk CF (1993) Transformation of Tetrahymena thermophila by microinjection of a foreign gene. Proc Natl Acad Sci USA 90:9295–9299

    CAS  PubMed  Google Scholar 

  • Kunze G, Kunze I (1994) Characterization of Arxula adeninivorans strains from different habitats. Antonie van Leeuwenhoek 65:607–614

    Google Scholar 

  • MacKenzie DA, Wong Wathanarat P, Carter AT, Archer DB (2000) Isolation and use of a homologous histone H4 promoter and a ribosomal DNA region in a transformation vector for the oil-producing fungus Mortierella alpina. Appl Environm Microbiol 66:4655–4661

    Article  CAS  Google Scholar 

  • Middelhoven JW, Hoogkamer-Te Niet MC, Kreger van Rij NJW (1984) Trichosporon adeninovorans sp. nov., a yeast species utilizing adenine, xanthine, uric acid, putrescine and primary n-alkylamines as the sole source of carbon, nitrogen and energy. Antonie van Leeuwenhoek 50:369–387

    CAS  PubMed  Google Scholar 

  • Middelhoven WJ, de Jonge IM, Winter M (1991) Arxula adeninivorans, a yeast assimilating many nitrogenous and aromatic compounds. Antonie van Leeuwenhoek 60:129–137

    Google Scholar 

  • Middelhoven WJ, Coenen A, Kraakman B, Gelpke MDS (1992) Degradation of some phenols and hydroxybenzoates by the imperfect ascomycetous yeasts Candida parapsilosis and Arxula adeninivorans: evidence for an operative gentisate pathway. Antonie van Leeuwenhoek 62:181–187

    CAS  PubMed  Google Scholar 

  • Müller S, Sandal T, Kamp-Hansen P, Dalboge H (1998) Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Kluyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast 14:1267–1283

    Article  CAS  PubMed  Google Scholar 

  • Piontek M, Hagedorn J, Hollenberg CP, Gellissen G, Strasser AW (1998) Two novel expression systems based on the yeasts Schwanniomyces occidentalis and Pichia stipitis. Appl Microbiol Biotechnol 50:331–338

    Article  CAS  PubMed  Google Scholar 

  • Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast. Yeast 8:423–488

    CAS  PubMed  Google Scholar 

  • Rose MD, Winston F, Hieter P (1990) Methods in yeast genetics. A laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

  • Rösel H, Kunze G (1995) Cloning and characterization of a TEF gene for elongation factor 1α from the yeast Arxula adeninivorans. Curr Genet 28:360–366

    PubMed  Google Scholar 

  • Rösel H, Kunze G (1998) Integrative transformation of the dimorphic yeast Arxula adeninivorans LS3 based on hygromycin B resistance. Curr Genet 33:157–163

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Samsonova IA, Kunze G, Bode R, Böttcher F (1996) A set of genetic markers for the chromosomes of the imperfect yeast Arxula adeninivorans. Yeast 12:1209–1217

    Article  CAS  PubMed  Google Scholar 

  • Smith CL, Klo S, Cantor CR (1988) Pulsed field gel electrophoresis and technology of large DNA molecules. In: Davis K (ed) Genome analysis, a practical approach. IPL, Oxford, pp 41–72

  • Stoltenburg R, Wartmann T, Kunze I, Kunze G (1995) Reliable method to separate free and membrane-bound polysomes from different yeast species. Bio/Techniques 18:564–568

    Google Scholar 

  • Sudbery P (1996) The expression of recombinant proteins in yeasts. Curr Opin Biotechnol 7:517–524

    Article  CAS  PubMed  Google Scholar 

  • Sulo P, Martin NC (1993) Isolation and characterization of LIP5. A lipoat biosynthetic locus of Saccharomyces cerevisiae. J Biol Chem 268:17634–17639

    Google Scholar 

  • Tanaka A, Ohnishi N, Fukui S (1967) Studies on the formation of vitamins and their function in hydrocarbon fermentation. Production of vitamin B6 by Candida albicans in hydrocarbon medium. J Ferment Technol 45. 617–623

  • Van der Walt JP, Smith MT, Yamada Y (1990) Arxula gen. nov. (Candidaceae), a new anamorphic, arthroconidial yeast genus. Antonie van Leeuwenhoek 57:59–61

    PubMed  Google Scholar 

  • Wartmann T, Kunze G (2000) Genetic transformation and biotechnological application of the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 54:619–624

    Google Scholar 

  • Wartmann T, Krüger A, Adler K, Bui MD, Kunze I, Kunze G (1995) Temperature dependent dimorphism of the yeast Arxula adeninivorans LS3. Antonie van Leeuwenhoek 68:215–223

    CAS  PubMed  Google Scholar 

  • Wartmann T, Rösel H, Kunze I, Bode R, Kunze G (1998) AILV1 gene from the yeast Arxula adeninivorans LS3—a new selective transformation marker. Yeast 14:1017–1025

    Article  CAS  PubMed  Google Scholar 

  • Wartmann T, Erdmann J, Kunze I, Kunze G (2000) Morphology-related effects on gene expression and protein accumulation of the yeast Arxula adeninivorans LS3. Arch Microbiol 173:253–261

    Article  CAS  PubMed  Google Scholar 

  • Wartmann T, Böer E, Huarto-Pico A, Sieber H, Bartelsen O, Gellissen G, Kunze G (2002a) High-level production and secretion of recombinant proteins by the dimorphic yeast Arxula adeninivorans. FEMS Yeast Res 2:363–369

    Article  CAS  PubMed  Google Scholar 

  • Wartmann T, Stephan UW, Bube I, Böer E, Melzer M, Manteuffel R, Stoltenburg R, Guengerich L, Gellissen G, Kunze G (2002b) Post-translational modifications of the AFET3 gene product—a component of the iron transport system in budding cells and mycelia of the yeast Arxula adeninivorans. Yeast 19:849–862

    Google Scholar 

  • Wartmann T, Stoltenburg R, Böer E, Sieber H, Bartelsen O, Gellissen G, Kunze G (2003) The ALEU2 gene—a new component for an Arxula adeninivorans-based expression platform. FEMS Yeast Res 3:223–232

    Google Scholar 

  • Yang XX, Wartmann T, Stoltenburg R, Kunze G (2000) Halotolerance of the yeast Arxula adeninivorans LS3. Antonie van Leeuwenhoek 77:303–311

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. I. Kunze for helpful discussions and critical reading of the manuscript. We also thank H. Bohlmann and R. Franz for excellent technical assistance. The research was supported by grants from the Ministry of Science and Research, Magdeburg, Sachsen/Anhalt, Germany (grant no. 2067A/0025, 2463A/0086G), Ministry of Economy, Nordrhein-Westfalen (TPW-9910v08) and by Funds of the Chemical Industry (GK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kunze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wartmann, T., Bellebna, C., Böer, E. et al. The constitutive AHSB4 promoter—a novel component of the Arxula adeninivorans-based expression platform. Appl Microbiol Biotechnol 62, 528–535 (2003). https://doi.org/10.1007/s00253-003-1323-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1323-6

Keywords

Navigation