Skip to main content
Log in

Polymorphic SVA retrotransposons at four loci and their association with classical HLA class I alleles in Japanese, Caucasians and African Americans

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

An Erratum to this article was published on 28 May 2010

Abstract

Polymorphic insertion frequencies of the retrotransposons known as the “SVA” elements were investigated at four loci in the MHC class I genomic region to determine their allele and haplotype frequencies and associations with the HLA-A, -B or -C genes for 100 Japanese, 100 African Americans, 174 Australian Caucasians and 66 reference cell lines obtained from different ethnic groups. The SVA insertions representing different subfamily members varied in frequency between none for SVA-HF in Japanese and 65% for SVA-HB in Caucasians or African Americans with significant differences in frequencies between the three populations at least at three loci. The SVA loci were in Hardy–Weinberg equilibrium except for the SVA-HA locus which deviated significantly in African Americans and Caucasians possibly because of a genomic deletion of this locus in individuals with the HLA-A*24 allele. Strong linkage disequilibria and high percentage associations between the human leucocyte antigen (HLA) class I gene alleles and some of the SVA insertions were detected in all three populations in spite of significant frequency differences for the SVA and HLA class I alleles between the three populations. The highest percentage associations (>86%) were between SVA-HB and HLA-B*08, -B*27, -B*37 to -B*41, -B*52 and -B*53; SVA-HC and HLA-B*07; SVA-HA and HLA-A*03, -A*11 and -A*30; and SVA-HF and HLA-A*03 and HLA-B*47. From pairwise associations in the three populations and the homozygous cell line results, it was possible to deduce the SVA and HLA class I allelic combinations (haplotypes), population differences and the identity by descent of several common HLA-A allelic lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bennett EA, Coleman LE, Tsui C, Pittard WS, Devine SE (2004) Natural genetic variation caused by transposable elements in humans. Genetics 168:933–951

    Article  CAS  PubMed  Google Scholar 

  • Clark AG, Hubisz MJ, Bustamante CD, Williamson SH, Neilsen R (2005) Ascertainment bias in studies of human genome-wide polymorphism. Genome Res 15:1496–1502

    Article  CAS  PubMed  Google Scholar 

  • Dunn DS, Ota M, Inoko H, Kulski JK (2003) Association of MHC dimorphic Alu insertions with HLA class I and MIC genes in Japanese HLA-B48 haplotypes. Tissue Antigens 62:259–262

    Article  CAS  PubMed  Google Scholar 

  • Dunn DS, Tait BD, Kulski JK (2005) The distribution of polymorphic Alu insertions within the MHC class I HLA-B7 and HLA-B57 haplotypes. Immunogenetics 56:765–768

    Article  CAS  PubMed  Google Scholar 

  • Dunn DS, Inoko H, Kulski JK (2006) The association between non-melanoma skin cancer and a young dimorphic Alu element within the major histocompatibility complex class I genomic region. Tissue Antigens 68:127–134

    Article  CAS  PubMed  Google Scholar 

  • Dunn DS, Choy MK, Phipps ME, Kulski JK (2007) The distribution of major histocompatibility complex class I polymorphic Alu insertions and their associations with HLA alleles in a Chinese population from Malaysia. Tissue Antigens 70:136–143

    Article  CAS  PubMed  Google Scholar 

  • Edwards MC, Gibbs RA (1992) A human dimorphism resulting from loss of an Alu. Genomics 14:590–597

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1:47–50

    CAS  PubMed  Google Scholar 

  • Fernando MM, Stevens CR, Walsh EC, De Jager PL, Goyette P, Plenge RM et al (2008) Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet 4:e1000024

    Article  PubMed  Google Scholar 

  • Garcia-Perez JL, Doucet AJ, Bucheton A, Moran JV, Gilbert N (2007) Distinct mechanisms for trans-mediated mobilization of cellular RNAs by the LINE-1 reverse transcriptase. Genome Res 17:602–611

    Article  CAS  PubMed  Google Scholar 

  • Garnier-Gere P, Dillmann C (1992) A computer program for testing pairwise linkage disequilibria in subdivided populations. J Heredity 83:239

    CAS  Google Scholar 

  • Gaudieri S, Dawkins RL, Habara K, Kulski JK, Gojobori T (2000) SNP profile within the human major histocompatibility complex reveals an extreme and interrupted level of nucleotide diversity. Genome Res 10:1579–1586

    Article  CAS  PubMed  Google Scholar 

  • Gaunt TR, Rodriguez S, Carlos Zapata C, Day INM (2006) MIDAS: software for analysis and visualisation of interallelic disequilibrium between multiallelic markers. BMC Bioinformatics 7:227–238

    Article  PubMed  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Heredity 86:485–486

    Google Scholar 

  • Hassoun H, Coetzer TL, Vassiliadis JN, Sahr KE, Maalouf GJ, Saad ST, Catanzariti L, Palek J (1994) A novel mobile element inserted in the alpha spectrin gene: spectrin dayton. A truncated alpha spectrin associated with hereditary elliptocytosis. J Clin Invest 94:643–648

    Article  CAS  PubMed  Google Scholar 

  • Horton R, Gibson R, Coggill P, Miretti M, Allcock RJ, Almeida J, Forbes S, Gilbert JG, Halls K, Harrow JL, Hart E, Howe K, Jackson DK, Palmer S, Roberts AN, Sims S, Stewart CA, Traherne JA, Trevanion S, Wilming L, Rogers J, de Jong PJ, Elliott JF, Sawcer S, Todd JA, Trowsdale J, Beck S (2008) Variation analysis and gene annotation of eight MHC haplotypes: the MHC Haplotype Project. Immunogenetics 60:1–18

    Article  CAS  PubMed  Google Scholar 

  • Itoh Y, Inoko H, Kulski JK, Sasaki S, Meguro A, Takiyama N, Nishida T, Yuasa T, Ohno S, Mizuki N (2006) Four-digit allele genotyping of the HLA-A and HLA-B genes in Japanese patients with Behcet’s disease by a PCR–SSOP–Luminex method. Tissue Antigens 67:390–394

    Article  CAS  PubMed  Google Scholar 

  • Kulski JK, Dunn DS (2005) Polymorphic Alu insertions within the major histocompatibility complex class I genomic region: a brief review. Cytogenet Genome Res 110:193–202

    Article  CAS  PubMed  Google Scholar 

  • Kulski JK, Gaudieri S, Martin A, Dawkins RL (1999) Coevolution of PERB11 (MIC) and HLA class I genes with HERV-16 and retroelements by extended genomic duplication. J Mol Evol 49:84–97

    Article  CAS  PubMed  Google Scholar 

  • Kulski JK, Shigenari A, Shiina T, Ota M, Hosomichi K, James I, Inoko H (2008) Human endogenous retrovirus (HERVK9) structural polymorphism with haplotypic HLA-A allelic associations. Genetics 180:445–457

    Article  CAS  PubMed  Google Scholar 

  • Kulski JK, Shigenari A, Shiina T, Hosomichi K, Yawata M, Inoko H (2009) HLA-A allele associations with viral MER9-LTR nucleotide sequences at two distinct loci within the MHC alpha block. Immunogenetics 61:257–270

    Article  CAS  PubMed  Google Scholar 

  • Makino S, Kaji R, Ando S, Tomizawa M, Yasuno K, Goto S, Matsumoto S, Tabuena MD, Maranon E, Dantes M, Lee LV, Ogasawara K, Tooyama I, Akatsu H, Nishimura M, Tamiya G (2007) Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. Am J Hum Genet 80:393–406

    Article  CAS  PubMed  Google Scholar 

  • Marsh SG (2000) WHO Nomenclature Committee for Factors of the HLA System. Nomenclature for factors of the HLA system, update July 2000. Tissue Antigens 56:476–477

    Article  CAS  PubMed  Google Scholar 

  • Marsh SGE, Parham P, Barber DL (2000) The HLA factsbook. Academic, London

    Google Scholar 

  • McKenzie LM, Pecon-Slattery J, Carrington M, O’Brien SJ (1999) Taxonomic hierarchy of HLA class I allele sequences. Genes Immun 1:120–129

    Article  CAS  PubMed  Google Scholar 

  • Moriyama Y, Kato K, Mura T, Juji T (2006) Analysis of HLA gene frequencies and HLA haplotype frequencies for bone marrow donors in Japan. MHC 12:83–201 (in Japanese)

    Google Scholar 

  • Ono M, Kawakami M, Takezawa T (1987) A novel human nonviral retroposon derived from an endogenous retrovirus. Nucleic Acids Res 15:8725–8737

    Article  CAS  PubMed  Google Scholar 

  • Ostertag EM, Goodier JL, Zhang Y, Kazazian HH Jr (2003) SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet 73:1444–1451

    Article  CAS  PubMed  Google Scholar 

  • Perneger TV (1998) What is wrong with Bonferroni adjustments. Br Med J 136:1236–1238

    Google Scholar 

  • Perrière G, Gouy M (1996) WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369

    Article  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Heredity 86:248–249

    Google Scholar 

  • Saitou N, Nei M (1986) The number of nucleotides required to determine the branching order of three species, with special reference to the human–chimpanzee–gorilla divergence. J Mol Evol 24:189–204

    Article  CAS  PubMed  Google Scholar 

  • Sasieni PD (1997) From genotypes to genes: doubling the sample size. Biometrics 53:1253–1261

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Wu LC, Sanlioglu S, Chen R, Mendoza AR, Dangel AW, Carroll MC, Zipf WB, Yu CY (1994) Structure and genetics of the partially duplicated gene RP located immediately upstream of the complement C4A and the C4B genes in the HLA class III region. Molecular cloning, exon–intron structure, composite retroposon, and breakpoint of gene duplication. J Biol Chem 269:8466–8476

    CAS  PubMed  Google Scholar 

  • Shiina T, Ota M, Shimizu S, Katsuyama Y, Hashimoto N, Takasu M, Anzai T, Kulski JK, Kikkawa E, Naruse T, Kimura N, Yanagiya K, Watanabe A, Hosomichi K, Kohara S, Iwamoto C, Umehara Y, Meyer A, Wanner V, Sano K, Macquin C, Ikeo K, Tokunaga K, Gojobori T, Inoko H, Bahram S (2006) Rapid evolution of major histocompatibility complex class I genes in primates generates new disease alleles in humans via hitchhiking diversity. Genetics 173:1555–1570

    Article  CAS  PubMed  Google Scholar 

  • Shiina T, Hosomichi K, Inoko H, Kulski JK (2009) The HLA genomic loci map: expression, interaction, diversity and disease. J Hum Genet 54:15–39

    Article  CAS  PubMed  Google Scholar 

  • Stewart CA, Horton R, Allcock RJ, Ashurst JL, Atrazhev AM, Coggill P, Dunham I, Forbes S, Halls K, Howson JM, Humphray SJ, Hunt S, Mungall AJ, Osoegawa K, Palmer S, Roberts AN, Rogers J, Sims S, Wang Y, Wilming LG, Elliott JF, de Jong PJ, Sawcer S, Todd JA, Trowsdale J, Beck S (2004) Complete MHC haplotype sequencing for common disease gene mapping. Genome Res 14:1176–1187

    Article  CAS  PubMed  Google Scholar 

  • Strichman-Almashanu LZ, Bustin M, Landsman D (2003) Retroposed copies of the HMG genes: a window to genome dynamics. Genome Res 13:800–812

    Article  CAS  PubMed  Google Scholar 

  • Takasu M, Hayashi R, Maruya E, Ota M, Imura K, Kougo K, Kobayashi C, Saji H, Ishikawa Y, Asai T, Tokunaga K (2007) Deletion of entire HLA-A gene accompanied by an insertion of a retrotransposon. Tissue Antigens 70:144–150

    Article  CAS  PubMed  Google Scholar 

  • Tian W, Wang F, Cai JH, Li LX (2008) Polymorphic insertions in 5 Alu loci within the major histocompatibility complex class I region and their linkage disequilibria with HLA alleles in four distinct populations in mainland China. Tissue Antigens 72:559–567

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Xing J, Grover D, Hedges DJ, Han K, Walker JA, Batzer MA (2005) SVA elements: a hominid-specific retroposon family. J Mol Biol 354:994–1007

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Tokunaga K, Geraghty DE, Tadokoro K, Juji T (1997) Large-scale comparative mapping of the MHC class I region of predominant haplotypes in Japanese. Immunogenetics 46:135–141

    Article  CAS  PubMed  Google Scholar 

  • Witt C, Sayer D, Trimboli F, Saw M, Herrmann R, Cannell P, Baker D, Christiansen F (2000) Unrelated donors selected prospectively by block-matching have superior bone marrow transplant outcome. Hum Immunol 61:85–91

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Shi L, Shi L, Lin K, Yu L, Sun H, Huang X, Tao Y, Yi W, Liu S, Chu J (2009) The association between HLA-A, -B alleles and major histocompatibility complex class I polymorphic Alu insertions in four populations in China. Tissue Antigens 73:575–581

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Paula M Moolhuijzen for her help with the initial bioinformatics genomic analysis for some of the PCR primer sets, Professor M Ota for the Japanese HLA-typed DNA samples, Dr. Campbell Witt for the Australian Caucasian HLA-typed DNA samples and Dr. Takashi Shiina for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy K. Kulski.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00251-010-0453-0

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Table S1

Percentage frequency of diplotypes at four SVA loci in African Americans (AA), Australian Caucasians (AC) and Japanese (J) (PDF 24.9 kb)

Supplementary Table S2

Maximum-likelihood haplotype frequencies and population differences at four polymorphic SVA insertions loci, SVA-HF, SVA-HA, SVA-HC and SVA-HB, in African Americans (A), Australian Caucasians (C) and Japanese (J). The analysis was performed using the conventional EM algorithm in the ARLEQUIN software package.**** (PDF 29.6 kb)

Supplementary Table S3

Percentage association and LD as a D′ or r 2 measure between SVA insertions and HLA-A and HLA-B alleles at paired loci in African Americans (PDF 39.4 kb)

Supplementary Table S4

Percentage association and LD as a D′ or r 2 measure between SVA insertions and HLA-A, HLA-B and HLA-C alleles at paired loci in Caucasians (PDF 35.6 kb)

Supplementary Table S5

Percentage association and LD as a D prime or r-squared measure between SVA insertions and HLA-A, HLA-B and HLA-C alleles at paired loci in japanese (PDF 28.8 kb)

Supplementary Fig. S1

Nucleotide sequence of the SVA PCR products including the PCR primer sequences (red letters), the SVA flanking sequences (black letters), the SVA sequence (green letters) and the flanking target site duplication (TSD) sequences (underlined blue letters). The names of the primer sequences (Table 2) are shown in parenthesis (PDF 72.9 kb)

Supplementary Fig. S2

Theoretical scheme for evolution of SVA/HLA class I haplotypes. HLA-Xn is a HLA class I gene (X) and allele (n) which mutated to an allele Xm or exchanged with gene alleles HLA-Xc1, -Xc2 or -Xc3 by crossing over or gene conversion. The original SVAi insertion and its linkage with HLA-Xn in this model is assumed to have occurred in a population with a high frequency of the HLA-Xn allele 3 Mya and then evolved over 1.2 × 105 generations to the present time (PDF 55.2 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulski, J.K., Shigenari, A. & Inoko, H. Polymorphic SVA retrotransposons at four loci and their association with classical HLA class I alleles in Japanese, Caucasians and African Americans. Immunogenetics 62, 211–230 (2010). https://doi.org/10.1007/s00251-010-0427-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-010-0427-2

Keywords

Navigation