Skip to main content
Log in

Positive diversifying selection in avian Mx genes

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Mx proteins are interferon-induced GTPases that confer antiviral activities against RNA viruses. We analysed the molecular evolution of the Mx gene in birds using data on interspecific divergence in anseriform and galliform birds, and on intraspecific diversity in commercial chicken lines, local Chinese chicken breeds as well as in the mallard. The overall ratio of non-synonymous to synonymous substitution was unusually high, 0.80, indicating relaxed constraint or positive selection. Evidence for the latter was provided by that a total of 11–18 codons were found to have evolved under positive selection. The great majority of these codons are located in a region unique to birds at the N-terminal end of the Mx protein. We found an excess of non-synonymous polymorphisms relative to synonymous variants in all comparisons. This, together with positive Tajima’s D values in the local Chinese chicken breeds and in the mallard suggests that balancing selection is acting in avian Mx genes. As such, Mx mimics the major histocompatibility complex system, indicating that heterozygous individuals are better off withstanding pathogen attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altmann SM, Mellon MT, Johnson MC, Paw BH, Trede NS, Zon LI et al (2004) Cloning and characterization of an Mx gene and its corresponding promoter from the zebrafish, Danio rerio. Dev Comp Immunol 28:295–306 doi:10.1016/j.dci.2003.09.001

    Article  PubMed  CAS  Google Scholar 

  • Anisimova M, Bielawski JP, Yang Z (2001) Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 18:1585–1592

    PubMed  CAS  Google Scholar 

  • Arnheiter H, Haller O (1983) Mx gene control of interferon action: different kinetics of the antiviral state against influenza virus and vesicular stomatitis virus. J Virol 47:626–630

    PubMed  CAS  Google Scholar 

  • Axelsson E, Hultin-Rosenberg L, Brandström M, Zwahlén M, Clayton DF, Ellegren H (2008) Natural selection in avian protein-coding genes expressed in brain. Mol Ecol 17:3008–3017 doi:10.1111/j.1365-294X.2008.03795.x

    Article  PubMed  CAS  Google Scholar 

  • Balkissoon D, Staines K, McCauley J, Wood J, Young J, Kaufman J et al (2007) Low frequency of the Mx allele for viral resistance predates recent intensive selection in domestic chickens. Immunogenetics 59:687–691 doi:10.1007/s00251-007-0235-5

    Article  PubMed  CAS  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265 doi:10.1093/bioinformatics/bth457

    Article  PubMed  CAS  Google Scholar 

  • Bazzigher L, Schwarz A, Staeheli P (1993) No enhanced influenza virus resistance of murine and avian cells expressing cloned duck Mx protein. Virology 195:100–112 doi:10.1006/viro.1993.1350

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi D, Schultz U, Staeheli P (1995) The interferon-induced Mx protein of chickens lacks antiviral activity. J Interferon Cytokine Res 15:47–53

    PubMed  CAS  Google Scholar 

  • Charleston B, Stewart HJ (1993) An interferon-induced Mx protein: cDNA sequence and high-level expression in the endometrium of pregnant sheep. Gene 137:327–331 doi:10.1016/0378-1119(93)90029-3

    Article  PubMed  CAS  Google Scholar 

  • Crowe TM, Bowie RCK, Bloomer P, Mandiwana TG, Hedderson TAJ, Randi E et al (2006) Phylogenetics, biogeography and classification of, and character evolution in, gamebirds (Aves: Galliformes): effects of character exclusion, data partitioning and missing data. Cladistics 22:495–532 doi:10.1111/j.1096-0031.2006.00120.x

    Article  Google Scholar 

  • Ellinwood NM, McCue JM, Gordy PW, Bowen RA (1998) Cloning and characterization of cDNAs for a bovine (Bos taurus) Mx protein. J Interferon Cytokine Res 18:745–755

    Article  PubMed  CAS  Google Scholar 

  • Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155:1405–1413

    PubMed  CAS  Google Scholar 

  • Flohr F, Schneider-Schaulies S, Haller O, Kochs G (1999) The central interactive region of human MxA GTPase is involved in GTPase activation and interaction with viral target structures. FEBS Lett 463:24–28 doi:10.1016/S0014-5793(99)01598-7

    Article  PubMed  CAS  Google Scholar 

  • Garrigan D, Hedrick PW (2003) Perspective: detecting adaptive molecular polymorphism: lessons from the MHC. Evolution Int J Org Evolution 57:1707–1722

    CAS  Google Scholar 

  • Gaudieri S, Dawkins RL, Habara K, Kulski JK, Gojobori T (2000) SNP profile within the human major histocompatibility complex reveals an extreme and interrupted level of nucleotide diversity. Genome Res 10:1579–1586 doi:10.1101/gr.127200

    Article  PubMed  CAS  Google Scholar 

  • Haller O, Kochs G (2002) Interferon-induced mx proteins: dynamin-like GTPases with antiviral activity. Traffic 3:710–717 doi:10.1034/j.1600-0854.2002.31003.x

    Article  PubMed  CAS  Google Scholar 

  • International Chicken Polymorphism Map Consortium (2004) A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 432:717–722 doi:10.1038/nature03156

    Article  CAS  Google Scholar 

  • Jung K, Chae C (2006) Expression of Mx protein and interferon-alpha in pigs experimentally infected with swine influenza virus. Vet Pathol 43:161–167 doi:10.1354/vp.43-2-161

    Article  PubMed  CAS  Google Scholar 

  • Kim CH, Johnson MC, Drennan JD, Simon BE, Thomann E, Leong JA (2000) DNA vaccines encoding viral glycoproteins induce nonspecific immunity and Mx protein synthesis in fish. J Virol 74:7048–7054 doi:10.1128/JVI.74.15.7048-7054.2000

    Article  PubMed  CAS  Google Scholar 

  • Ko JH, Jin HK, Asano A, Takada A, Ninomiya A, Kida H et al (2002) Polymorphisms and the differential antiviral activity of the chicken Mx gene. Genome Res 12:595–601 Article published online before print in March 2002 doi:10.1101/gr.210702

    PubMed  CAS  Google Scholar 

  • Ko JH, Takada A, Mitsuhashi T, Agui T, Watanabe T (2004) Native antiviral specificity of chicken Mx protein depends on amino acid variation at position 631. Anim Genet 35:119–122 doi:10.1111/j.1365-2052.2004.01096.x

    Article  PubMed  CAS  Google Scholar 

  • Kosakovsky Pond SL, Frost SD (2005a) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533 doi:10.1093/bioinformatics/bti320

    Article  CAS  Google Scholar 

  • Kosakovsky Pond SL, Frost SD (2005b) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222 doi:10.1093/molbev/msi105

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163 doi:10.1093/bib/5.2.150

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Vidal SM (2002) Functional diversity of Mx proteins: variations on a theme of host resistance to infection. Genome Res 12:527–530 doi:10.1101/gr.20102

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Qu LJ, Yao JF, Yang N (2006) Skewed allele frequencies of an Mx gene mutation with potential resistance to avian influenza virus in different chicken populations. Poult Sci 85:1327–1329

    PubMed  CAS  Google Scholar 

  • Livant EJ, Avendano S, McLeod S, Ye X, Lamont SJ, Dekkers JC et al (2007) MX1 exon 13 polymorphisms in broiler breeder chickens and associations with commercial traits. Anim Genet 38:177–179 doi:10.1111/j.1365-2052.2007.01577.x

    Article  PubMed  CAS  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654 doi:10.1038/351652a0

    Article  PubMed  CAS  Google Scholar 

  • Muller-Doblies D, Ackermann M, Metzler A (2002) In vitro and in vivo detection of Mx gene products in bovine cells following stimulation with alpha/beta interferon and viruses. Clin Diagn Lab Immunol 9:1192–1199 doi:10.1128/CDLI.9.6.1192-1199.2002

    Article  PubMed  CAS  Google Scholar 

  • Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21

    PubMed  CAS  Google Scholar 

  • Reeves RH, O’Hara BF, Pavan WJ, Gearhart JD, Haller O (1988) Genetic mapping of the Mx influenza virus resistance gene within the region of mouse chromosome 16 that is homologous to human chromosome 21. J Virol 62:4372–4375

    PubMed  CAS  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R, Dna SP (2003) DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497 doi:10.1093/bioinformatics/btg359

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Nanda I, Hoehn H, Schartl M, Haaf T, Buerstedde JM et al (2005) Second report on chicken genes and chromosomes 2005. Cytogenet Genome Res 109:415–479 doi:10.1159/000084205

    Article  PubMed  CAS  Google Scholar 

  • Schumacher B, Bernasconi D, Schultz U, Staeheli P (1994) The chicken Mx promoter contains an ISRE motif and confers interferon inducibility to a reporter gene in chick and monkey cells. Virology 203:144–148 doi:10.1006/viro.1994.1464

    Article  PubMed  CAS  Google Scholar 

  • Seyama T, Ko JH, Ohe M, Sasaoka N, Okada A, Gomi H et al (2006) Population research of genetic polymorphism at amino acid position 631 in chicken mx protein with differential antiviral activity. Biochem Genet 44:432–433 doi:10.1007/s10528-006-9040-3

    Article  CAS  Google Scholar 

  • Staeheli P, Yu YX, Grob R, Haller O (1989) A double-stranded RNA-inducible fish gene homologous to the murine influenza virus resistance gene Mx. Mol Cell Biol 9:3117–3121

    PubMed  CAS  Google Scholar 

  • Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76:449–462 doi:10.1086/428594

    Article  PubMed  CAS  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989 doi:10.1086/319501

    Article  PubMed  CAS  Google Scholar 

  • Swanson WJ, Nielsen R, Yang Q (2003) Pervasive adaptive evolution in mammalian fertilization proteins. Mol Biol Evol 20:18–20

    PubMed  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Tanaka T, Nei M (1989) Positive Darwinian selection observed at the variable-region genes of immunoglobulins. Mol Biol Evol 6:447–459

    PubMed  CAS  Google Scholar 

  • Trobridge GD, Chiou PP, Leong JA (1997) Cloning of the rainbow trout (Oncorhynchus mykiss) Mx2 and Mx3 cDNAs and characterization of trout Mx protein expression in salmon cells. J Virol 71:5304–5311

    PubMed  CAS  Google Scholar 

  • Wang X, Rosa AJ, Oliverira HN, Rosa GJ, Guo X, Travnicek M et al (2006) Transcriptome of local innate and adaptive immunity during early phase of infectious bronchitis viral infection. Viral Immunol 19:768–774 doi:10.1089/vim.2006.19.768

    Article  PubMed  CAS  Google Scholar 

  • Wong WS, Yang Z, Goldman N, Nielsen R (2004) Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 168:1041–1051 doi:10.1534/genetics.104.031153

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

  • Yang Z, Wong WS, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118 doi:10.1093/molbev/msi097

    Article  PubMed  CAS  Google Scholar 

  • Zekarias B, Ter Huurne AA, Landman WJ, Rebel JM, Pol JM, Gruys E (2002) Immunological basis of differences in disease resistance in the chicken. Vet Res 33:109–125 doi:10.1051/vetres:2002001

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Erik Sonnhammer, Darren Obbard, Tom Little and members of the Ellegren Laboratory for useful discussion and Stuart Piertney for the red grouse tissue.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Yang or Hans Ellegren.

Additional information

S.B. and L.Q. contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berlin, S., Qu, L., Li, X. et al. Positive diversifying selection in avian Mx genes. Immunogenetics 60, 689–697 (2008). https://doi.org/10.1007/s00251-008-0324-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-008-0324-0

Keywords

Navigation