Skip to main content
Log in

Major histocompatibility genes in the Lake Tana African large barb species flock: evidence for complete partitioning of class II B, but not class I, genes among different species

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

An Erratum to this article was published on 11 May 2005

Abstract

The 16 African ‘large’ barb fish species of Lake Tana inhabit different ecological niches, exploit different food webs and have different temporal and spatial spawning patterns within the lake. This unique fish species flock is thought to be the result of adaptive radiation within the past 5 million years. Previous analyses of major histocompatibility class II B exon 2 sequences in four Lake Tana African large barb species revealed that these sequences are indeed under selection. No sharing of class II B alleles was observed among the four Lake Tana African large barb species. In this study we analysed the class II B exon 2 sequences of seven additional Lake Tana African large barb species and African large barbs from the Blue Nile and its tributaries. In addition, the presence and variability of major histocompatibility complex class I UA exon 3 sequences in six Lake Tana and Blue Nile African large barb species was analysed. Phylogenetic lineages are maintained by purifying or neutral selection on non-peptide binding regions. Class II B intron 1 and exon 2 sequences were not shared among the different Lake Tana African large barb species or with the riverine barb species. In contrast, identical class I UA exon 3 sequences were found both in the lacustrine and riverine barb species. Our analyses demonstrate complete partitioning of class II B alleles among Lake Tana African large barb species. In contrast, class I alleles remain for the large part shared among species. These different modes of evolution probably reflect the unlinked nature of major histocompatibility genes in teleost fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aoyagi K, Dijkstra JM, Xia C, Denda I. Ototake M, Hashimoto K, Nakanishi T (2002) Classical MHC class I genes composed of highly divergent sequence lineages share a single locus in rainbow trout (Oncorhynchus mykiss). J Immunol 168:260–273

    Google Scholar 

  • Bingulac-Popovic J, Figueroa F, Sato A, Talbot WS, Johnson SL, Gates M, Postlethwait JH, Klein J (1997) Mapping of Mhc class I and class II regions to different linkage groups in the zebrafish, Danio rerio. Immunogenetics 46:129–134

    Article  CAS  PubMed  Google Scholar 

  • Bontrop RE (1994) Nonhuman primate Mhc-DQA and -DQB second exon nucleotide sequences: a compilation. Immunogenetics 39:81–92

    Article  Google Scholar 

  • Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39

    Article  CAS  PubMed  Google Scholar 

  • Cavender TM (1991) The fossil record of the Cyprinidae. Chapman & Hall, London

    Google Scholar 

  • Cereb N, Hughes AL, Yang SY (1997) Locus-specific conservation of the HLA class I introns by intra-locus homogenization. Immunogenetics 47:30–36

    Article  Google Scholar 

  • Cooper S, Adams EJ, Wells RS, Walker CM, Parham P (1998) A major histocompatibility complex class I allele shared by two species of chimpanzee. Immunogenetics 47:212–217

    Article  Google Scholar 

  • Dixon B, Nagelkerke LA, Sibbing FS, Egberts E, Stet RJM (1996) Evolution of MHC class II beta chain-encoding genes in the Lake Tana barbel species flock (Barbus intermedius complex). Immunogenetics 44:419–431

    Article  CAS  PubMed  Google Scholar 

  • Erp van SHM, Dixon B, Figueroa F, Egberts E, Stet RJM (1996) Identification and characterization of a new major histocompatibility complex class I gene in carp (Cyprinus carpio L.). Immunogenetics 44:49–61

    Article  Google Scholar 

  • Evans DT, Piekarczyk MS, Cadavid L, Hinshaw VS, Watkins DI (1998) Two different primate species express an identical functional MHC class I allele. Immunogenetics 47:206–211

    Article  Google Scholar 

  • Graser R, O’Huigin C, Vincek V, Meyer A, Klein J (1996) Trans-species polymorphism of class II Mhc loci in danio fishes. Immunogenetics 44:36–48

    Article  Google Scholar 

  • Grimholt U, Drabløs F, Jorgensen SM, Høyheim B, Stet RJM (2002) The Major histocompatibility class I locus in Atlantic salmon (Salmo salar L.): polymorphism, linkage and protein modelling. Immunogenetics 54:570–581

    Article  Google Scholar 

  • Gyllensten UB, Lashkari D, Erlich HA (1990) Allelic diversification at the class II DQB locus of the mammalian major histocompatibility complex. Proc Natl Acad Sci USA 87:1835–1839

    Google Scholar 

  • Hansen JD, Strassburger P, Thorgaard GH, Young WP, Du Pasquier L (1999) Expression, linkage, and polymorphism of MHC-related genes in rainbow trout, Oncorhynchus mykiss. J Immunol 163:774–786

    Google Scholar 

  • Hughes AL (1999) Adaptive evolution of genes and genomes. Oxford University Press, New York

    Google Scholar 

  • Hughes AL (2000) Evolution of introns and exons of class II major histocompatibility complex genes of vertebrates. Immunogenetics 51:473–486

    Article  CAS  PubMed  Google Scholar 

  • Hughes AL, Nei M (1989) Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc Natl Acad Sci USA 86:958–962

    CAS  PubMed  Google Scholar 

  • Klein J (1987) Origin of major histocompatibility complex polymorphism: the trans-species hypothesis. Hum Immunol 19:155–162

    Article  CAS  PubMed  Google Scholar 

  • Kruiswijk CP, Hermsen T, Fujiki K, Dixon B, Savelkoul HFJ, Stet RJM (2004) Analysis of genomic and expressed major histocompatibility class Ia and class II genes in a hexaploid Lake Tana African ‘large’ barb individual (Barbus intermedius). Immunogenetics 55:770–781

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  CAS  PubMed  Google Scholar 

  • Kuroda N, Figueroa F, O’Huigin C, Klein J (2002) Evidence that the separation of Mhc class II from class I loci in the zebrafish, Danio rerio, occurred by translocation. Immunogenetics 54:418–430

    Article  CAS  PubMed  Google Scholar 

  • Marsh SGE, Parham P, Barber LD (2000) The HLA facts book. Academic, San Diego

    Google Scholar 

  • Mayer WE, Jonker M, Klein D, Ivanyi P, Seventer van G, Klein J (1988) Nucleotide sequences of chimpanzee MHC class I alleles: evidence for trans-species mode of evolution. EMBO J 7:2765–2774

    CAS  PubMed  Google Scholar 

  • McAdam SN, Boyson JE, Liu X, Garber TL, Hughes AL, Bontrop RE, Watkins DI (1995) Chimpanzee MHC class I A locus alleles are related to only one of the six families of human A locus alleles. J Immunol 154:6421–6429

    Google Scholar 

  • Michalova V, Murray BW, Sultmann H, Klein J (2000) A contig map of the Mhc class I genomic region in the zebrafish reveals ancient synteny. J Immunol 164:5296–5305

    Google Scholar 

  • Miller KM, Withler RE (1996) Sequence analysis of a polymorphic Mhc class II gene in Pacific salmon. Immunogenetics 43:337–351

    Google Scholar 

  • Mohr PA (1962) The Geology of Ethiopia. University college of Addis Ababa Press, Addis Ababa, Ethiopia

    Google Scholar 

  • Murray BW, Sultmann H, Klein J (1999) Analysis of a 26-kb region linked to the Mhc in zebrafish: genomic organization of the proteasome component beta/transporter associated with antigen processing-2 gene cluster and identification of five new proteasome beta subunit genes. J Immunol 163:2657–2666

    Google Scholar 

  • Nagelkerke LAJ, Sibbing FA (2000) The large barbs (Barbus spp., Cyprinidae, Teleostei) of Lake Tana (Ethiopia), with a description of a new species, Barbus osseensis. Neth J Zool 50:179–214

    Article  Google Scholar 

  • Nei M, Jin L (1989) Variances of the average numbers of nucleotide substitutions within and between populations. Mol Biol Evol 6:290–300

    Google Scholar 

  • Ono H, O’Huigin C, Tichy H, Klein J (1993) Major-histocompatibility-complex variation in two species of cichlid fishes from Lake Malawi. Mol Biol Evol 10:1060–1072

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Saper MA, Bjorkman PJ, Wiley DC (1991) Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. J Mol Biol 219:277–319

    CAS  PubMed  Google Scholar 

  • Sato A, Klein D, Sultmann H, Figueroa F, O’Huigin C, Klein J (1997) Class I Mhc genes of cichlid fishes: identification, expression, and polymorphism. Immunogenetics 46:63–72

    Article  Google Scholar 

  • Sato A, Figueroa F, Murray BW, Malaga-Trillo E, Zaleska-Rutczynska Z, Sultmann H, Toyosawa S, Wedekind C, Steck N, Klein J (2000) Nonlinkage of major histocompatibility complex class I and class II loci in bony fishes. Immunogenetics 51:108–116

    Article  CAS  PubMed  Google Scholar 

  • Shum BP, Guethlein L, Flodin LR, Adkison MA, Hedrick RP, Nehring RB, Stet RJM, Secombes C, Parham P (2001) Modes of salmonid MHC class I and II evolution differ from the primate paradigm. J Immunol 166:3297–3308

    CAS  PubMed  Google Scholar 

  • Stet RJM, Kruiswijk CP, Saeij JPJ, Wiegertjes GF (1998) Major histocompatibility genes in cyprinid fishes: theory and practice. Immunol Rev 166:301–316

    Google Scholar 

  • Stet RJM, de Vries B, Mudde K, Hermsen GT, van Heerwaarden J, Shum BP, Grimholt U (2002) Unique haplotypes of co-segregating major histocompatibility class II A and II B alleles in Atlantic salmon (Salmo salar) give rise to diverse class II genotypes. Immunogenetics 54:570–581

    Article  Google Scholar 

  • Stet RJM, Kruiswijk CP, Dixon B (2003) Major histocompatibility lineages and immune gene function in teleost fishes: the road not taken. Crit Rev Immunol 23:441–471

    Article  CAS  PubMed  Google Scholar 

  • Sultmann H, Sato A, Murray BW, Takezaki N, Geisler R, Rauch GJ, Klein J (2000) Conservation of Mhc class III region synteny between zebrafish and human as determined by radiation hybrid mapping. J Immunol 165:6984–6993

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Watkins DI (1995) The evolution of major histocompatibility class I genes in primates. Crit Rev Immunol 15:1–29

    CAS  PubMed  Google Scholar 

  • Zardoya R, Doadrio I (1999) Molecular evidence on the evolutionary and biogeographical patterns of European cyprinids. J Mol Evol 49:227–237

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Martin de Graaf, Leo Nagelkerke and Sibbing for providing tissue samples of Lake Tana African large barb species flock individuals and Darrell Siebert and Elizabeth Barratt for providing tissue samples of riverine African large barb individuals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René J. M. Stet.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00251-005-0802-6

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruiswijk, C.P., Hermsen, T., van Heerwaarden, J. et al. Major histocompatibility genes in the Lake Tana African large barb species flock: evidence for complete partitioning of class II B, but not class I, genes among different species. Immunogenetics 56, 894–908 (2005). https://doi.org/10.1007/s00251-005-0767-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-005-0767-5

Keywords

Navigation