Skip to main content

Advertisement

Log in

Evidence for non-random distribution of Fcγ receptor genotype combinations

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Human IgG receptors (FcγR) display considerable heterogeneity, and are crucial immune response modulating molecules. FcγRIIA, FcγRIIIA, and FcγRIIIB display functional biallelic polymorphisms. FcγR polymorphisms have been found associated with susceptibility to infectious and autoimmune diseases. Linked transmission of FcγR alleles was studied by determining the distribution of FcγRIIA-FcγRIIIA-FcγRIIIB genotype combinations in 514 Dutch Caucasian, and 149 Japanese blood donors. The structure of the FcγR locus was studied by radiation hybrid mapping of FcγRIA, FcγRIIA, FcγRIIB, FcγRIIIA, FcγRIIIB, and adjacent genes from the pentraxin family. In addition, crossing-over frequencies within the FcγR locus were determined in 63 Dutch Caucasian families, encompassing 183 individuals. FcγRII and FcγRIII subclasses were mapped in close proximity (0.47–3.14 cR). Accordingly, crossing-over frequencies within the FcγRII-III locus in Dutch families were low. Analysis of combined FcγR genotypes strongly suggested non-random distribution of FcγRIIA-FcγRIIIA-, and FcγRIIIA-FcγRIIIB genotypes in Dutch donors (P<0.001 and P<0.00001, respectively), and of FcγRIIA-FcγRIIIb genotypes in Japanese blood donors (P<0.02). Frequencies of FcγRII-FcγRIII haplotypes differed significantly between Dutch and Japanese (P<0.00001). This study provides important information for the interpretation of studies reporting associations of FcγR alleles with disease, and underscores the apparent differences in FcγR heterogeneity between ethnic groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  • Abo T, Tilden AB, Balch CM, Kumagai K, Troup GM, Cooper MD (1984) Ethnic differences in the lymphocyte proliferative response induced by a murine IgG1 antibody, Leu-4, to the T3 molecule. J Exp Med 160:303–309

    CAS  PubMed  Google Scholar 

  • Bolland S, Ravetch JV (1999) Inhibitory pathways triggered by ITIM-containing receptors. Adv Immunol 72:149–177

    CAS  PubMed  Google Scholar 

  • Bredius RGM, Fijen CAP, de Haas M, Kuijper EJ, Weening RS, Van de Winkel JGJ, Out TA (1994) Role of the neutrophil FcγRIIa (CD32) and the FcγRIIIb (CD16) polymorphic forms in phagocytosis of human IgG1- and IgG3-opsonized bacteria and erythrocytes. Immunology 83:624–630

    CAS  PubMed  Google Scholar 

  • Bux J, Stein EL, Bierling P, Fromont P, Clay M, Stroncek D, Santoso S (1997) Characterization of a new alloantigen (SH) on the human neutrophil Fcγreceptor IIIb. Blood 89:1027–1034

    CAS  PubMed  Google Scholar 

  • Carlsson LE, Santoso S, Baurichter G, Kroll H, Papenberg S, Eichler P, Westerdaal NA, Kiefel V, Van de Winkel JG, Greinacher A (1998) Heparin-induced thrombocytopenia: new insights into the impact of the FcγR-131R-H polymorphism. Blood 92:1526-1531

    CAS  PubMed  Google Scholar 

  • Clynes R, Ravetch JV (1995) Cytotoxic antibodies trigger inflammation through Fc receptors. Immunity 3:21–26

    CAS  PubMed  Google Scholar 

  • Clynes R, Dumitru C, Ravetch JV (1998a) Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 279:1052–1054

    CAS  PubMed  Google Scholar 

  • Clynes R, Takechi Y, Moroi Y, Houghton A, Ravetch JV (1998b) Fc receptors are required in passive and active immunity to melanoma. Proc Natl Acad Sci USA 95:652–656

    Article  CAS  PubMed  Google Scholar 

  • Clynes R, Maizes JS, Guinamard R, Ono M, Takai T, Ravetch JV (1999) Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J Exp Med 189:179–185

    CAS  PubMed  Google Scholar 

  • De Haas M, Kleijer M, van Zwieten R, Roos D, Von dem Borne AE (1995) Neutrophil Fcγ RIIIb deficiency, nature and clinical consequences: a study of 21 individuals from 14 families. Blood 86:2403–2413

    PubMed  Google Scholar 

  • De Wit TPM., Suijkerbuik RF, Capel PJA, van Kessel AG, Van de Winkel JGJ (1993) Assignment of three human high-affinity Fcγ receptor genes to chromosome 1, band q21.1. Immunogenetics 38:57–59

    PubMed  Google Scholar 

  • Dijstelbloem HM, Scheepers RHM, Oost WW, Stegeman CA, van der Pol WL, Sluiter WJ, Kallenberg CGM, van de Winkel JGJ, Cohen Tervaert JW (1999) Fcgamma receptor polymorphisms in Wegener's granulomatosis: risk factors for disease relapse. Arthritis Rheum 42:1823–1827

    Article  CAS  PubMed  Google Scholar 

  • Edberg JC, Moon JJ, Chang DJ, Kimberly RP (1998) Differential regulation of human neutrophil FcγRIIa (CD32) and FcγRIIIb (CD16)-induced Ca2+ transients. J Biol Chem 273:8071–8079

    Article  CAS  PubMed  Google Scholar 

  • EdbergJC, Langefeld CD, Wu J, Moser KL, Kaufman KM, Kelly J, Bansal V, Brown WM, Salmon JE, Rich SS, Harley JB, Kimberly RP (2002) Genetic linkage and association of Fcγ receptor IIIA (CD16A) on chromosome 1q23 with human systemic lupus erythematosus. Arthritis Rheum 46:2132–2140

    Article  PubMed  Google Scholar 

  • Eskdale J, Keijsers V, Huizinga TWJ, Gallagher G (1999) Microsatellite alleles and single nucleotide polymorphisms (SNP) combine to form four major haplotype families at the human interleukin-10 (IL-10) locus. Genes Immun 1:151–155

    Article  CAS  PubMed  Google Scholar 

  • Fijen CAP, Bredius RGM, Kuijper EJ (1993) Polymorphism of IgG Fc receptors in meningococcal disease. Ann Intern Med 119:636

    CAS  Google Scholar 

  • Fromont P, Bettaieb A, Skouri H, Floch C, Poulet E, Duedari N, Bierling P (1992) Frequency of the polymorphonuclear neutrophil Fc gamma receptor III deficiency in the French population and its involvement in the development of neonatal alloimmune neutropenia. Blood 79:2131–2134

    CAS  PubMed  Google Scholar 

  • Gavin AL, Tan PS, Hogarth PM (1998) Gain-of-function mutations in FcγRI of NOD mice: implications for the evolution of the Ig superfamily. EMBO J 17:3850–3857

    Article  CAS  PubMed  Google Scholar 

  • Green JM, Schreiber AD, Brown EJ (1997) Role for a glycan phosphoinositol anchor in Fcγ receptor synergy. J Cell Biol 139:1209–1217

    Article  CAS  PubMed  Google Scholar 

  • Hatta Y, Tsuchiya N, Ohashi J, Matsushitu M, Fujiwara K, Hagiwara K, Juji T, Tokunaga K (1999) Association of Fcγ receptor IIIb, but not of Fcγ receptor IIa and IIIa, polymorphisms with systemic lupus erythematosus in Japanese. Genes Immun 1:53–60

    Article  CAS  PubMed  Google Scholar 

  • Hazenbos WL, Gessner JE, Hofhuis FM, Kuipers H, Meyer D, Heijnen IA, Schmidt RE, Sandor M, Capel PJ, Daeron M, Van de Winkel JGJ, Verbeek JS (1996) Impaired IgG-dependent anaphylaxis and Arthus reaction in Fc gamma RIII (CD16) deficient mice. Immunity 5:181–188

    CAS  PubMed  Google Scholar 

  • Hessner MJ, Shivaram SM, Dinauer DM, Curtis BR, Endean DJ, Aster RH (1999) Neutrophil antigen (FcγRIIIB) SH gene frequencies in six racial groups. Blood 93:1115–1116

    CAS  PubMed  Google Scholar 

  • Huizinga TWJ, Kleijer M, Tetteroo PA, Roos D, Von dem Borne AE (1990) Biallelic neutrophil NA-antigen system is associated with a polymorphism on the phospho-inositol-linked Fcγ receptor III (CD16). Blood 75:213–217

    CAS  PubMed  Google Scholar 

  • Karassa FB, Trikalinos TA, Ioannidis JP (2002) Role of the Fcγ receptor IIa polymorphism in susceptibility to systemic lupus erythematosus and lupus nephritis: a meta-analysis. Arthritis Rheum 46:1563–1571

    Article  CAS  PubMed  Google Scholar 

  • Koene HR, Kleijer M, Algra J, Roos D, Von dem Borne AE, de Haas M (1997) FcγRIIIa-158 V/F polymorphism influences the binding of IgG by NK cell FcγRIIIa, independently of the FcγRIIIa-48L/R/H phenotype. Blood 90:1109–1114

    PubMed  Google Scholar 

  • Koene HR, Kleijer M, Roos D, de Haas M, Von dem Borne AE (1998) FcγRIIIB gene duplication: evidence for presence and expression of three distinct FcγRIIIB genes in NA(1+,2+)SH(+) individuals. Blood 91:673–679

    CAS  PubMed  Google Scholar 

  • Kyogoku C, Dijstelbloem HM, Tsuchiya N, Hatta Y, Kato H, Yamaguchi A, Fukazawa T, Jansen MD, Hashimoto H, Van de Winkel JGJ, Kallenberg CGM, Tokunaga K (2002) Fcγ receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility. Arthritis Rheum 46:1242–1254

    Article  CAS  PubMed  Google Scholar 

  • Lehrnbecher T, Foster CB, Zhu S, Leitman SF, Goldin LR, Huppi K, Chanock SJ (1999) Variant genotypes of the low-affinity Fcγ receptors in two control populations and a review of low-affinity Fcγ receptor polymorphisms in control and disease populations. Blood 94:4220–4232

    CAS  PubMed  Google Scholar 

  • Leppers-Van de Straat FGJ, Van der Pol WL, Jansen MD, Sugita N, Yoshie H, Kobayashi T, Van de Winkel JGJ (2000) A novel PCR-based method for direct Fcγ receptor IIIa (CD16) allotyping. J Immunol Methods 242:127–132

    PubMed  Google Scholar 

  • Maxwell KF, Powell MS, Hulett MD, Barton PA, McKenzie IF, Garrett TP, Hogarth PM (1999) Crystal structure of the human leukocyte Fc receptor, FcγRIIa. Nat Struct Biol 6:437–442

    Article  CAS  PubMed  Google Scholar 

  • Osborne JM, Chacko GW, Brandt JT, Anderson CL (1994) Ethnic variation in frequency of an allelic polymorphism of human FcγRIIa determined with allele specific oligonucleotide probes. J Immunol Methods 173:207–217

    Article  CAS  PubMed  Google Scholar 

  • Parren PW, Warmerdam PA, Boeije LC, Arts J, Westerdaal NA, Vlug A, Capel PJ, Aarden LA, Van de Winkel JG (1992) On the interaction of IgG subclasses with the low affinity FcγRIIa (CD32) on human monocytes, neutrophils, and platelets. J Clin Invest 90:1537–1546

    CAS  PubMed  Google Scholar 

  • Peltz GA, Grundy HO, Lebo RV, Yssel H, Barsh GS, Moore KW (1986) Human Fc gamma RIII: cloning, expression, and identification of the chromosomal locus of two Fc receptors for IgG. Proc Natl Acad Sci USA 86:1013–1017

    Google Scholar 

  • Qiu WQ, de Bruin D, Brownstein BH, Pearse R, Ravetch JV (1990) Organization of the human and mouse low-affinity FcγR genes: duplication and recombination. Science 248:732–735

    CAS  PubMed  Google Scholar 

  • Ravetch JV, Perussia B (1989) Alternative membrane forms of FcγRIII (CD16) on human natural killer cells and neutrophils. Cell type-specific expression of two genes that differ in single nucleotide substitutions. J Exp Med 170:481–497

    CAS  PubMed  Google Scholar 

  • Salmon JE, Edberg JC, Brogle NL, Kimberly RP (1992) Allelic polymorphisms of human Fcγ receptor IIA and Fcγ receptor IIIB. Independent mechanisms for differences in human phagocyte function. J Clin Invest 89:1274–1281

    CAS  PubMed  Google Scholar 

  • Schnackenberg L, Flesch BK, Neppert J (1997) Linkage disequilibria between Duffy blood groups, Fc gamma IIa and Fc gamma IIIb allotypes. Exp Clin Immunogenet 14:235–242

    CAS  PubMed  Google Scholar 

  • Su Y, Brooks DG, Li L, Lepercq J, Trofatter JA, Ravetch JV, Lebo RV (1993) Myelin protein zero gene mutated in Charcot-Marie-Tooth type 1B patients. Proc Natl Acad Sci USA 90:10856–10860

    CAS  PubMed  Google Scholar 

  • Su K, Wu J, Edberg JC, McKenzie SE, Kimberly RP (2002) Genomic organization of classical human low-affinity Fcγ receptor genes. Genes Immun 3:S51–56

    Article  CAS  PubMed  Google Scholar 

  • Sylvestre DL, Ravetch JV (1994) Fc receptors initiate the Arthus reaction: redefining the inflammatory cascade. Science 265:1095–1098

    CAS  PubMed  Google Scholar 

  • Takai T, Ono M, Hikida M, Ohmori H, Ravetch JV (1996) Augmented humoral and anaphylactic responses in FcγRII-deficient mice. Nature 379:346–349

    CAS  PubMed  Google Scholar 

  • Tsokos GC, Liossis SNC (1999) Immune cell signaling defects in lupus: activation, anergy and death. Immunol Today 20:119–124

    Article  CAS  PubMed  Google Scholar 

  • Van de Winkel JGJ, Capel PJA (1993) Human IgG Fc receptor heterogeneity: molecular aspects and clinical implications. Immunol Today 14:215–221

    Article  PubMed  Google Scholar 

  • Van der Pol WL, Van de Winkel JGJ (1998) IgG receptor polymorphisms: risk factors for disease. Immunogenetics 48:222–232

    Google Scholar 

  • Van der Pol WL, Huizinga TWJ, Vidarsson G, van der Linden MW, Jansen MD, Keijsers V, Leppers-van de Straat FGJ, Westerdaal NAC, Van de Winkel JGJ, Westendorp RGJ (2001) Relevance for Fcγ receptor and interleukin-10 polymorphisms for meningococcal disease. J Infect Dis 184:1548–1555

    Article  PubMed  Google Scholar 

  • Vossebeld PJM, Kessler J, Von dem Borne AE, Roos D, Verhoeven AJ (1995) Heterotypic FcγR clusters evoke a synergistic Ca2+ response in human neutrophils. J Biol Chem 270:10671–10679

    Article  CAS  PubMed  Google Scholar 

  • Walsh MT, Divane A, Whitehead AS (1996) Fine mapping of the human pentraxin gene region on chromosome 1q23. Immunogenetics 44:62–69

    Article  CAS  PubMed  Google Scholar 

  • Warmerdam PAM, Van de Winkel JGJ, Gosselin EJ, Capel PJA (1990) Molecular basis for a polymorphism of human Fcγ receptor II (CD32). J Exp Med 172:19–25

    CAS  PubMed  Google Scholar 

  • Warmerdam PAM, Van de Winkel JGJ, Vlug A, Westerdaal NAC, Capel PJA (1991) A single amino acid in the second Ig-like domain of the human Fcγ receptor II is critical for human IgG2 binding. J Immunol 147:1338–1343

    CAS  PubMed  Google Scholar 

  • Warmerdam PAM, Nabben NM, van de Graaf SAR, Van de Winkel JGJ, Capel PJA (1992) The human low-affinity IgG receptor IIC is a result of an unequal crossover event. J Biol Chem 268:7346–7349

    Google Scholar 

  • Westendorp RGJ, Langermans JAM, Huizinga TWJ, Elouali AH, Verweij CL, Boomsma DI, Vandenbroucke JP (1997) Genetic influence on cytokine production and fatal meningococcal disease. Lancet 349:170–173

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Edberg JC, Redecha PB, Bansal V, Guyre PM, Coleman K, Salmon JE, Kimberly RP (1997) A novel polymorphism of FcγRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest 100:1059–1070

    PubMed  Google Scholar 

  • Yasuda K, Sugita N, Yamamoto K, Kobayashi T, Yoshie H (2001) Seven single nucleotide substitutions in human Fc gamma receptor IIB gene. Tissue Antigens 58:339–342

    Article  CAS  PubMed  Google Scholar 

  • Yuan R, Clynes R, Oh J, Ravetch JV, Scharff MD (1998) Antibody-mediated modulation of Cryptococcus neoformans infection is dependent on distinct Fc receptor functions and subclasses. J Exp Med 187:641–648

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Westerdaal and V. Keijsers for excellent technical assistance, and Dr. C. Wijmenga for help with radiation hybrid mapping and valuable comments on the manuscript. This work was supported by a grant from the Netherlands Organization for Scientific Research (NWO grant no. 95-10-624).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.-Ludo van der Pol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Pol, WL., Jansen, M.D., Sluiter, W.J. et al. Evidence for non-random distribution of Fcγ receptor genotype combinations. Immunogenetics 55, 240–246 (2003). https://doi.org/10.1007/s00251-003-0574-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-003-0574-9

Keywords

Navigation