Skip to main content
Log in

Molecular crowding accelerates aggregation of α-synuclein by altering its folding pathway

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Intracellular macromolecular crowding can lead to increased aggregation of proteins, especially those that lack a natively folded conformation. Crowding may also be mimicked by the addition of polymers like polyethylene glycol (PEG) in vitro. α-Synuclein is an intrinsically disordered protein that exhibits increased aggregation and amyloid fibril formation in a crowded environment. Two hypotheses have been proposed to explain this observation. One is the excluded volume effect positing that reduced water activity in a crowded environment leads to increased effective protein concentration, promoting aggregation. An alternate explanation is that increased crowding facilitates conversion to a non-native form increasing the rate of aggregation. In this work, we have segregated these two hypotheses to investigate which one is operating. We show that mere increase in concentration of α-synuclein is not enough to induce aggregation and consequent fibrillation. In vitro, we find a complex relationship between PEG concentrations and aggregation, in which smaller PEGs delay fibrillation; while, larger ones promote fibril nucleation. In turn, while PEG600 did not increase the rate of aggregation, PEG1000 did and PEG4000 and PEG12000 slowed it but led to a higher overall fibril burden in the latter to cases. In cells, PEG4000 reduces the aggregation of α-synuclein but in a way specific to the cellular environment/due to cellular factors. The aggregation of the similarly sized, globular lysozyme does not increase in vitro when at the same concentrations with either PEG8000 or PEG12000. Thus, natively disordered α-synuclein undergoes a conformational transition in specific types of crowded environment, forming an aggregation-prone conformer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alderson TR, Markley JL (2013) Biophysical characterization of α-synuclein and its controversial structure. Intrinsically Disord Proteins 1:18–39

    Article  PubMed  Google Scholar 

  • Anand JC, Brown AD (1968) Growth rate patterns of the so-called osmophilic and non-osmophilic yeasts in solutions of polyethylene glycol. J Gen Microbiol 52:205–212

    Article  CAS  Google Scholar 

  • Bartels T, Choi JG, Selkoe DJ (2011) alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477:107–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodles AM, Guthrie DJ, Greer B, Irvine GB (2001) Identification of the region of non-Abeta component (NAC) of Alzheimer’s disease amyloid responsible for its aggregation and toxicity. J Neurochem 78:384–395

    Article  CAS  PubMed  Google Scholar 

  • Breydo L, Sales AE, Frege T, Howell MC, Zaslavsky BY, Uversky VN (2015) Effects of polymer hydrophobicity on protein structure and aggregation kinetics in crowded milieu. Biochemistry 54:2957–2966

    Article  CAS  PubMed  Google Scholar 

  • Cappai R, Leck S, Tew D, Williamson NA, Smith DP, Galatis D, Sharples RA, Curtain CC, Ali FE, Cherny RA, Culvenor JG (2005) Dopamine promotes α-Synuclein aggregation into SDS-resistant soluble oligomers via a distinct folding pathway. FASEB J 19:1377–1379

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary RK, Patel KA, Patel MK, Joshi RH, Roy I (2015) Inhibition of aggregation of mutant huntingtin by nucleic acid aptamers in vitro and in a yeast model of Huntington’s disease. Mol Ther 23:1912–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng K, Wu Q, Zhang Z, Pielak GJ, Liu M, Li C (2018) Crowding and confinement can oppositely affect protein stability. Chem Phys Chem 19:3350–3355

    Article  CAS  PubMed  Google Scholar 

  • Crowther RA, Jakes R, Spillantini MG, Goedert M (1998) Synthetic filaments assembled from C-terminally truncated alpha-synuclein. FEBS Lett 436:309–312

    Article  CAS  PubMed  Google Scholar 

  • Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273:9443–9449

    Article  CAS  PubMed  Google Scholar 

  • Eliezer D, Kutluay E, Bussell R Jr, Browne G (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. J Mol Biol 307:1061–1073

    Article  CAS  PubMed  Google Scholar 

  • Fink AL (2006) The aggregation and fibrillation of alpha-synuclein. Acc Chem Res 39:628–634

    Article  CAS  PubMed  Google Scholar 

  • Fonin AV, Stepanenko OV, Sitdikova AK, Antifeeva IA, Kostyleva EI, Polyanichko AM, Karasev MM, Silonov SA, Povarova OI, Kuznetsova IM, Uversky VN, Turoverov KK (2019) Folding of poly-amino acids and intrinsically disordered proteins in overcrowded milieu induced by pH change. Int J Biol Macromol 125:244–255

    Article  CAS  PubMed  Google Scholar 

  • Gnutt D, Ebbinghaus S (2016) The macromolecular crowding effect–from in vitro into the cell. Biol Chem 397:37–44

    Article  CAS  PubMed  Google Scholar 

  • Gorensek-Benitez AH, Smith AE, Stadmiller SS, Perez Goncalves GM, Pielak GJ (2017) Cosolutes, crowding, and protein folding kinetics. J Phys Chem B 121:6527–6537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kardani J, Sethi R, Roy I (2017) Nicotine slows down oligomerisation of alpha-synuclein and ameliorates cytotoxicity in a yeast model of Parkinson’s disease. Biochim Biophys Acta Mol Basis Dis 1863:1454–1463

    Article  CAS  PubMed  Google Scholar 

  • Lashuel HA, Overk CR, Oueslati A, Masliah E (2013) The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14:38–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Q, Fan JB, Zhou Z, Zhou BR, Meng SR, Hu JY, Chen J, Liang Y (2012) The contrasting effect of macromolecular crowding on amyloid fibril formation. PLoS ONE 7:e36288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meriin AB, Zhang X, He X, Newnam GP, Chernoff YO, Sherman MY (2002) Huntingtin toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J Cell Biol 157:997–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller CM, Kin YC, Mittal J (2016) Protein composition determine the effects of crowdings on the properties of disordered proteins. Biophys J 111:28–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276:10577–10580

    Article  CAS  PubMed  Google Scholar 

  • Morozova LA, Haynie DT, Arico-Muendel C, Van Dael H, Dobson CM (1995) Structural basis of the stability of a lysozyme molten globule. Nat Struct Biol 2:871–875

    Article  CAS  PubMed  Google Scholar 

  • Munishkina LA, Cooper EM, Uversky VN, Fink AL (2004) The effect of macromolecular crowding on protein aggregation and amyloid fibril formation. J Mol Recognit 17:456–464

    Article  CAS  PubMed  Google Scholar 

  • Munishkina LA, Ahmad A, Fink AL, Uversky VN (2008) Guiding protein aggregation with macromolecular crowding. Biochemistry 47:8993–9006

    Article  CAS  PubMed  Google Scholar 

  • Nag A, Mitra G, Ghosh PC (1996) A colorimetric assay for estimation of polyethylene glycol and polyethylene glycolated protein using ammonium ferrothiocyanate. Anal Biochem 237:224–231

    Article  CAS  PubMed  Google Scholar 

  • Narhi L, Wood SJ, Steavenson S, Jiang Y, Wu GM, Anafi D, Kaufman SA, Martin F, Sitney K, Denis P, Louis JC (1999) Both familial Parkinson’s disease mutations accelerate α-synuclein aggregation. J Biol Chem 274:9843–9846

    Article  CAS  PubMed  Google Scholar 

  • Nath S, Meuvis J, Hendrix J, Carl SA, Engelborghs Y (2010) Early aggregation steps in alpha-synuclein as measured by FCS and FRET: evidence for a contagious conformational change. Biophys J 98:1302–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Outeiro TF, Lindquist S (2003) Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 302:1772–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Z, Hu D, Han S, Hong D-P, Fink AL (2007) Role of different regions of α-synuclein in the assembly of fibrils. Biochemistry 46:13322–13330

    Article  CAS  PubMed  Google Scholar 

  • Rivas G, Minton AP (2016) Macromolecular crowding in vitro, in vivo, and in between. Trends Biochem Sci 41:970–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleh AA, Bhadra AK, Roy I (2014) Activation of salt shock response leads to solubilisation of mutant huntingtin in Saccharomyces cerevisiae. Cell Stress Chaperones 19:667–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schapira AH, Olanow CW, Greenamyre JT, Bezard E (2014) Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: future therapeutic perspectives. Lancet 384:545–555

    Article  CAS  PubMed  Google Scholar 

  • Shtilerman MD, Ding TT, Lansbury PT Jr (2002) Molecular crowding accelerates fibrillization of alpha-synuclein: could an increase in the cytoplasmic protein concentration induce Parkinson’s disease? Biochemistry 41:3855–3860

    Article  CAS  PubMed  Google Scholar 

  • Ullman O, Fisher CK, Stultz CM (2011) Explaining the structural plasticity of α-synuclein. J Am Chem Soc 133:19536–19546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uversky VN (2019) Protein intrinsic disorder and structure-function continuum. Prog Mol Biol Transl Sci 166:1–17

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001) Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 276:10737–10744

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Cooper EM, Bower KS, Li J, Fink AL (2002) Accelerated alpha-synuclein fibrillation in crowded milieu. FEBS Lett 515:99–103

    Article  CAS  PubMed  Google Scholar 

  • Vancraenenbroeck R, Harel YS, Zheng W, Hofmann H (2019) Polymer effects modulate binding affinities in disordered proteins. Proc Natl Acad Sci USA 116:19506–19512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma G, Singh P, Bhat R (2020) Disorder under stress: role of polyol osmolytes in modulating fibrillation and aggregation of intrinsically disordered proteins. Biophys Chem 264:106422

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Perovic I, Chittuluru J, Kaganovich A, Nguyen LTT, Liao J, Auclair JR, Johnson D, Landeru A, Simorellis AK, Ju S, Cookson MR, Asturias FJ, Agar JN, Webb BN, Kang C, Ringe D, Petsko GA, Pochapsky TC, Hoang QQ (2011) A soluble α-synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci USA 108:17797–17802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren JR, Gordon JA (1970) Denaturation of globular proteins. II. The interaction of urea with lysozyme. J Biol Chem 245:4097–4104

    Article  CAS  PubMed  Google Scholar 

  • Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35:13709–13715

    Article  CAS  PubMed  Google Scholar 

  • Willey J, Sherwood L, Woolverton CJ (2017) Prescott’s microbiology, 10th edn. McGraw-Hill, New York

    Google Scholar 

  • Wood SJ, Wypych J, Steavenson S, Louis JC, Citron M, Biere AL (1999) Alpha-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson’s disease. J Biol Chem 274:19509–19512

    Article  CAS  PubMed  Google Scholar 

  • Wright PE, Dyson HJ (2015) Intrinsically disordered protein in cellular signalling and regulation. Nat Rev Mol Cell Biol 16:18–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Bhattacharya S, Thompson D (2018) Re-designing the α-synuclein tetramer. Chem Commun (Camb) 54:8080–8083

    Article  CAS  Google Scholar 

Download references

Acknowledgements

pRSETB-α-SYN was received as a gift from Prof. Roberto Cappai, University of Melbourne, Australia. p426GAL A53Tα-SYN-GFP was a gift from late Prof. Susan Lindquist, Massachusetts Institute of Technology, USA. Partial financial support from Science and Engineering Research Board is acknowledged. SJ is grateful to the Council for Scientific and Industrial Research for the award of senior research fellowship.

Funding

Partial financial support from Science and Engineering Research Board (CRG/2018/000458) is acknowledged. SJ is grateful to the Council for Scientific and Industrial Research for the award of senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ipsita Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 621 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Bhadra, A., Lakhera, S. et al. Molecular crowding accelerates aggregation of α-synuclein by altering its folding pathway. Eur Biophys J 50, 59–67 (2021). https://doi.org/10.1007/s00249-020-01486-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-020-01486-1

Keywords

Navigation