Skip to main content

Advertisement

Log in

In silico analysis of the transportome in human pancreatic ductal adenocarcinoma

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The altered expression and/or activity of ion channels and transporters (transportome) have been associated with malignant behavior of cancer cells and were proposed to be a hallmark of cancer. However, the impact of altered transportome in epithelial cancers, such as pancreatic ductal adenocarcinoma (PDAC), as well as its pathophysiological consequences, still remains unclear. Here, we report the in silico analysis of 840 transportome genes in PDAC patients’ tissues. Our study was focused on the transportome changes and their correlation with functional and behavioral responses in PDAC tumor and stromal compartments. The dysregulated gene expression datasets were filtered using a cut-off of fold-change values ≤−2 or ≥2 (adjusted p value ≤0.05). The dysregulated transportome genes were clearly associated with impaired physiological secretory mechanisms and/or pH regulation, control of cell volume, and cell polarity. Additionally, some down-regulated transportome genes were found to be closely linked to epithelial cell differentiation. Furthermore, the observed decrease in genes coding for calcium and chloride transport might be a mechanism for evasion of apoptosis. In conclusion, the current work provides a comprehensive overview of the altered transportome expression and its association with predicted PDAC malignancy with special focus on the epithelial compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CP:

Chronic pancreatitis

CPS:

Chronic pancreatitis stroma

EGFR:

Epidermal growth factor receptor

ECM:

Extracellular matrix

NE:

Normal epithelium

NHE1:

Na+/H+ exchanger 1

NHERF1:

Regulatory cofactor of Na+/H+ exchanger

HCO3 :

Bicarbonate

PDAC:

Pancreatic ductal adenocarcinoma

EMT:

Epithelial–mesenchymal transition

TE:

Tumor epithelium

TF:

Transcription factor

TS:

Tumor stroma

FC:

Fold change

References

  • Adinolfi E et al (2012) Expression of P2X7 receptor increases in vivo tumor growth. Cancer Res 72(12):2957–2969

    Article  CAS  PubMed  Google Scholar 

  • Alexander SPH, Mathie A, Peters JA (2011) Guide to receptors and channels (GRAC), 5th edition. Br J Pharmacol 164(Suppl):S1–S324

    Article  CAS  PubMed  Google Scholar 

  • Alexander SP et al (2015) The concise guide to pharmacology 2015/16: overview. Br J Pharmacol 172(24):5729–5743

    Article  CAS  PubMed  Google Scholar 

  • Andersen AP, Moreira JMA, Pedersen SF (2014) Interactions of ion transporters and channels with cancer cell metabolism and the tumour microenvironment. Philos Trans R Soc Lond Ser B Biol Sci 369(1638):20130098

    Article  Google Scholar 

  • Arcangeli A, Becchetti A (2006) Complex functional interaction between integrin receptors and ion channels. Trends Cell Biol 16(12):631–639

    Article  CAS  PubMed  Google Scholar 

  • Aronson PS, Giebisch G (2011) Effects of pH on potassium: new explanations for old observations. J Am Soc Nephrol JASN 22(11):1981–1989

    Article  CAS  PubMed  Google Scholar 

  • Bao Q et al (2010) Cancer stem cells in pancreatic cancer. Cancers 2(3):1629–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benitez CM, Goodyer WR, Kim SK (2012) Deconstructing pancreas developmental biology. Cold Spring Harbor Perspect Biol 4(6):1–17

    Article  Google Scholar 

  • Blankenburg M et al (2009) High-throughput omics technologies: potential tools for the investigation of influences of EMF on biological systems. Current Genom 10(2):86–92

    Article  CAS  Google Scholar 

  • Brembeck FH, Rosário M, Birchmeier W (2006) Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Current Opin Genet Dev 16(1):51–59

    Article  CAS  Google Scholar 

  • Brisson L et al (2013) NaV1.5 Na+ channels allosterically regulate the NHE-1 exchanger and promote the activity of breast cancer cell invadopodia. J Cell Sci 126(Pt 21):4835–4842

    Article  CAS  PubMed  Google Scholar 

  • Buck E et al (2007) Loss of homotypic cell adhesion by epithelial–mesenchymal transition or mutation limits sensitivity to epidermal growth factor receptor inhibition. Mol Cancer Ther 6(2):532–541

    Article  CAS  PubMed  Google Scholar 

  • Bulk E et al (2015) Epigenetic dysregulation of KCa 3.1 channels induces poor prognosis in lung cancer. Int J Cancer 137(6):1306–1317

    Article  CAS  PubMed  Google Scholar 

  • Burnell JM et al (1956) The effect in humans of extracellular pH change on the relationship between serum potassium concentration and intracellular potassium. J Clin Investig 35(9):935–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busco G et al (2010) NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space. FASEB J Off Publ Feder Am Soc Exp Biol 24(10):3903–3915

    CAS  Google Scholar 

  • Calvert RC et al (2004) Immunocytochemical and pharmacological characterisation of P2-purinoceptor-mediated cell growth and death in PC-3 hormone refractory prostate cancer cells. Anticancer Res 24(5 A):2853–2859

    CAS  PubMed  Google Scholar 

  • Cardone RA et al (2015) A novel NHE1-centered signaling cassette drives epidermal growth factor receptor-dependent pancreatic tumor metastasis and is a target for combination therapy. Neoplasia (New York, N.Y.) 17(2):155–166

    Article  CAS  Google Scholar 

  • Cerami EG et al (2011) Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res 39(Database issue):D685–D690

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Vincent JD, Clarke IJ (1994) Ion channels and the signal transduction pathways in the regulation of growth hormone secretion. Trends Endocrinol Metab 5(6):227–233

    Article  CAS  PubMed  Google Scholar 

  • de Miranda NFCC et al (2012) Role of the microenvironment in the tumourigenesis of microsatellite unstable and MUTYH-associated polyposis colorectal cancers. Mutagenesis 27(2):247–253

    Article  PubMed  Google Scholar 

  • Diss JKJ et al (2005) A potential novel marker for human prostate cancer: voltage-gated sodium channel expression in vivo. Prostate Cancer Prostatic Diseases 8(3):266–273

    Article  CAS  PubMed  Google Scholar 

  • Djamgoz MBA, Coombes RC, Schwab A (2014) Ion transport and cancer: from initiation to metastasis. Philos Trans R Soc Lond Ser B Biol Sci 369(1638):20130092

    Article  Google Scholar 

  • Falcone R et al (2016) Emerging therapies for pancreatic ductal carcinoma. J Solid Tumors 6(1):P65

    Article  Google Scholar 

  • Feig C et al (2012) The pancreas cancer microenvironment. Clin Cancer Res Off J Am Assoc Cancer Res 18(16):4266–4276

    Article  CAS  Google Scholar 

  • Feng M et al (2010) Store-independent activation of orai1 by SPCA2 in mammary tumors. Cell 143:84–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flourakis M et al (2010) Orai1 contributes to the establishment of an apoptosis-resistant phenotype in prostate cancer cells. Cell Death Disease 1:e75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser SP et al (2005) Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res Off J Am Assoc Cancer Res 11(15):5381–5389

    Article  CAS  Google Scholar 

  • Giannuzzo A, Pedersen SF, Novak I (2015) The P2X7 receptor regulates cell survival, migration and invasion of pancreatic ductal adenocarcinoma cells. Mol Cancer 14(1):203

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorbatenko A et al (2014) Regulation and roles of bicarbonate transporters in cancer. Front Physiol 5:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray KA et al (2016) A review of the new HGNC gene family resource. Human Genom 10(1):6

    Article  Google Scholar 

  • Grützmann R et al (2004) Gene expression profiling of microdissected pancreatic ductal carcinomas using high-density DNA microarrays. Neoplasia (New York, N.Y.) 6(5):611–622

    Article  Google Scholar 

  • Haanes KA, Schwab A, Novak I (2012) The P2X7 receptor supports both life and death in fibrogenic pancreatic stellate cells. PLOS One 7(12):e51164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Haw RA et al (2011) The Reactome BioMart. Database J Biol Databases Curation 2011:bar031

    Google Scholar 

  • Hayashi M, Novak I (2013) Molecular basis of potassium channels in pancreatic duct epithelial cells. Channels (Austin, Tex.) 7(6):432–441

    Article  CAS  Google Scholar 

  • Holzer P (2009) Acid-sensitive ion channels and receptors. Handbook Exp Pharmacol 194:283–332

    Article  CAS  Google Scholar 

  • Hotz B et al (2007) Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res Off J Am Assoc Cancer Res 13(16):4769–4776

    Article  CAS  Google Scholar 

  • Hu J et al (2007) Calcium-activated potassium channels mediated blood–brain tumor barrier opening in a rat metastatic brain tumor model. Mol Cancer 6:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang X, Jan LY (2014) Targeting potassium channels in cancer. J Cell Biol 206(2):151–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber SM (2013) Oncochannels. Cell Calcium 53(4):241–255

    Article  CAS  PubMed  Google Scholar 

  • Jäger H et al (2004) Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol Pharmacol 65(3):630–638

    Article  PubMed  Google Scholar 

  • Jentsch TJ (2008) CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit Rev Biochem Mol Biol. http://www.tandfonline.com/doi/full/10.1080/10409230701829110. Accessed 23 Feb 2016

  • Kaimal V et al (2010) ToppCluster: a multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems. Nucleic Acids Res 38(Web Server issue):W96–W102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalos M et al (2004) Prostein expression is highly restricted to normal and malignant prostate tissues. Prostate 60(3):246–256

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M et al (2002) The KEGG databases at GenomeNet. Nucleic Acids Res 30(1):42–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JB (2014) Channelopathies. Korean J Pediatr 57(1):1–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Kleeff J et al (2007) Pancreatic cancer microenvironment. Int J Cancer 121(4):699–705

    Article  CAS  PubMed  Google Scholar 

  • Kohler R et al (2000) Expression and function of endothelial Ca2+-activated K+ channels in human mesenteric artery : a single-cell reverse transcriptase-polymerase chain reaction and electrophysiological study in situ. Circ Res 87(6):496–503

    Article  CAS  PubMed  Google Scholar 

  • Kondratska K et al (2014) Orai1 and STIM1 mediate SOCE and contribute to apoptotic resistance of pancreatic adenocarcinoma. Biochim Biophys Acta 1843(10):2263–2269

    Article  CAS  PubMed  Google Scholar 

  • Kong SC et al (2014) Acid-base transport in pancreatic cancer: molecular mechanisms and clinical potential. Biochem Cell Biol 92(6):449–459

    Article  CAS  PubMed  Google Scholar 

  • Krapp A et al (1998) The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev 12(23):3752–3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnamachary B et al (2006) Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res 66(5):2725–2731

    Article  CAS  PubMed  Google Scholar 

  • Lallet-Daher H et al (2009) Intermediate-conductance Ca2+-activated K+ channels (IKCa1) regulate human prostate cancer cell proliferation through a close control of calcium entry. Oncogene 28(15):1792–1806

    Article  CAS  PubMed  Google Scholar 

  • Lee SH et al (2015) Crosstalking between androgen and PI3K/AKT signaling pathways in prostate cancer cells. J Biol Chem 290(5):2759–2768

    Article  CAS  PubMed  Google Scholar 

  • Litan A, Langhans SA (2015) Cancer as a channelopathy: ion channels and pumps in tumor development and progression. Front Cell Neurosc 9:86

    Article  Google Scholar 

  • Mani SA et al (2008) The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min XJ et al (2011) Dysfunction of volume-sensitive chloride channels contributes to cisplatin resistance in human lung adenocarcinoma cells. Exp Biol Med (Maywood, N.J.) 236(4):483–491

    Article  CAS  Google Scholar 

  • Novak I, Prætorius J (2016) Fundamentals of bicarbonate secretion in epithelia. In: Hamilton KL, Devor DC (eds) Ion channels and transporters of epithelia in health and disease. Springer/American Physiological Society, Berlin, pp 187–263. ISBN: 978-1-4939-3364-8 (Print), 978-1-4939-3366-2 (Online)

    Chapter  Google Scholar 

  • Novak I, Haanes KA, Wang J (2013) Acid-base transport in pancreas-new challenges. Front Physiol 4:380

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozdamar B et al (2005) Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science (New York, N.Y.) 307(5715):1603–1609

    Article  CAS  Google Scholar 

  • Pattabiraman DR, Weinberg RA (2014) Tackling the cancer stem cells—what challenges do they pose? Nat Rev Drug Discov 13(7):497–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen SF, Stock C (2013) Ion channels and transporters in cancer: pathophysiology, regulation, and clinical potential. Cancer Res 73(6):1658–1661

    Article  CAS  PubMed  Google Scholar 

  • Pilarsky C et al (2008) Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling. J Cell Mol Med 12(6B):2823–2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto JP et al (2015) StemChecker: a web-based tool to discover and explore stemness signatures in gene sets. Nucleic Acids Res 43(W1):W72–W77

    Article  PubMed  PubMed Central  Google Scholar 

  • Poulsen KA et al (2010) Deregulation of apoptotic volume decrease and ionic movements in multidrug-resistant tumor cells: role of chloride channels. Am J Physiol Cell Physiol 298(1):C14–C25

    Article  CAS  PubMed  Google Scholar 

  • Prevarskaya N, Skryma R, Shuba Y (2010) Ion channels and the hallmarks of cancer. Trends Mol Med 16(3):107–121

    Article  CAS  PubMed  Google Scholar 

  • Prevarskaya N et al (2014) Remodelling of Ca2+ transport in cancer: how it contributes to cancer hallmarks? Philos Trans R Soc Lond Ser B Biol Sci 369(1638):20130097

    Article  Google Scholar 

  • Puisieux A, Brabletz T, Caramel J (2014) Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 16(6):488–494

    Article  CAS  PubMed  Google Scholar 

  • Rhee SY et al (2008) Use and misuse of the Gene Ontology annotations. Nat Rev Genet 9(7):509–515

    Article  CAS  PubMed  Google Scholar 

  • Ritchie ME et al (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47

    Article  PubMed  PubMed Central  Google Scholar 

  • Rybarczyk P et al (2012) Transient receptor potential melastatin-related 7 channel is overexpressed in human pancreatic ductal adenocarcinomas and regulates human pancreatic cancer cell migration. Int J Cancer 131(6):E851–E861

    Article  CAS  PubMed  Google Scholar 

  • Sánchez Tilló E et al (2012) EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cellular and Molecular Life Science, Springer. http://download.springer.com/static/pdf/596/art%3A10.1007%2Fs00018-012-1122-2.pdf?originUrl=http://link.springer.com/article/10.1007/s00018-012-1122-2&token2=exp=1459172332~acl=/static/pdf/596/art%253A10.1007%252Fs00018-012-112. Accessed 28 Mar 2016

  • Santos A, Wernersson R, Jensen LJ (2015) Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes. Nucleic Acids Res 43(Database issue):D1140–D1144

    Article  PubMed  Google Scholar 

  • Schneider G et al (2005) Pancreatic cancer: basic and clinical aspects. Gastroenterology 128(6):1606–1625

    Article  CAS  PubMed  Google Scholar 

  • Schwab A, Stock C (2014) Ion channels and transporters in tumour cell migration and invasion. Philos Trans R Soc Lond Ser B Biol Sci 369(1638):20130102

    Article  Google Scholar 

  • Sharman JL et al (2011) IUPHAR-DB: new receptors and tools for easy searching and visualization of pharmacological data. Nucleic Acids Res 39(222):D534–D538

    Article  CAS  PubMed  Google Scholar 

  • Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30

    Article  PubMed  Google Scholar 

  • Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3(1):Article3

    PubMed  Google Scholar 

  • Soltanian S, Matin MM (2011) Cancer stem cells and cancer therapy. Tumour Biol J Int Soc Oncodeve Biol Med 32(3):425–440

    Article  Google Scholar 

  • Tian X et al (2011) E-cadherin/β-catenin complex and the epithelial barrier. J Biomed Biotechnol 567305. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3191826&tool=pmcentrez&rendertype=abstract. Accessed 29 Feb 2016

  • Tsekrekou M et al. (2012) Stem Cell Characters in Primary and Metastatic Tumour Establishment. In: Srivastava R, Shankar S (eds) Stem Cells and Human Diseases. Springer Netherlands, Dordrecht, pp 533–580. http://www.worldcat.org/title/stem-cells-and-human-diseases/oclc/779601082. Accessed 16 Sep 2016

  • Tolón RM et al (1996) Regulation of somatostatin gene expression by veratridine-induced depolarization in cultured fetal cerebrocortical cells. Mol Brain Res 35(1–2):103–110

    Article  PubMed  Google Scholar 

  • Wang Q et al (2016) Smad4-dependent suppressor pituitary homeobox 2 promotes PPP2R2A-mediated inhibition of Akt pathway in pancreatic cancer. Oncotarget 7(10):11208–11222. http://www.ncbi.nlm.nih.gov/pubmed/26848620. Accessed 8 Mar 2016

    PubMed  PubMed Central  Google Scholar 

  • White N, Burnstock G (2006) P2 receptors and cancer. Trends Pharmacol Sci 27(4):211–217

    Article  CAS  PubMed  Google Scholar 

  • Wilschanski M, Novak I (2013) The cystic fibrosis of exocrine pancreas. Cold Spring Harbor Perspect Med 3(5):a009746

    Article  Google Scholar 

  • Wu X et al (1998) Modulation of calcium current in arteriolar smooth muscle by α v β 3 and α 5 β 1 integrin ligands. J Cell Biol 143(1):241–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X et al (2001) Regulation of the L-type calcium channel by alpha 5beta 1 integrin requires signaling between focal adhesion proteins. J Biol Chem 276(32):30285–30292

    Article  CAS  PubMed  Google Scholar 

  • Yau C et al (2010) A multigene predictor of metastatic outcome in early stage hormone receptor-negative and triple-negative breast cancer. Breast Cancer Res BCR 12(5):R85

    Article  PubMed  Google Scholar 

  • Zhao M et al (2015) dbEMT: an epithelial–mesenchymal transition associated gene resource. Sci Rep 5:11459

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou MW, Fang YT, Xiang JB, Chen ZY (2015) Therapeutics progression in pancreatic cancer and cancer stem cells. J Cancer Ther 6:237–244. doi:10.4236/jct.2015.63026

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by FP7 Marie Curie Initial Training Network “IonTraC” (Grant Agreement No. 289648). D. Tawfik was supported by the DAAD. We are grateful to Dr. Christian Röder, Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and UKSH Campus Kiel, for his kind support. Dr. Silke Szymczak, Institute of Medical Informatics and Statistics, Christian-Albrechts-University Kiel and UKSH Campus Kiel, for providing an introduction and overview of the biostatistics tools for microarray analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Zaccagnino or H. Kalthoff.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Special Issue: Ion Channels, Transporters and Cancer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 306 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaccagnino, A., Pilarsky, C., Tawfik, D. et al. In silico analysis of the transportome in human pancreatic ductal adenocarcinoma. Eur Biophys J 45, 749–763 (2016). https://doi.org/10.1007/s00249-016-1171-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-016-1171-9

Keywords

Navigation