Skip to main content
Log in

Diffusion-limited attachment of large spherical particles to flexible membrane-immobilized receptors

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Relatively large (~100 nm) spherical particles, e.g., virions, vesicles, or metal nanoparticles, often interact with short (<10 nm) flexible receptors immobilized in a lipid membrane or on other biologically relevant surfaces. The attachment kinetics of such particles may be limited globally by their diffusion toward a membrane or locally by diffusion around receptors. The detachment kinetics, also, can be limited by diffusion. Focusing on local diffusion limitations and using suitable approximations, we present expressions for the corresponding rate constants and identify their dependence on particle size and receptor length. We also illustrate features likely to be observed in such kinetics for particles (e.g., vesicles) with a substantial size distribution. The results obtained are generic and can be used to interpret a variety of situations. For example, we estimate upper values of virion attachment rate constants and clarify the likely effect of vesicle size distribution on previously observed non-exponential kinetics of vesicle detachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson JB, Anderson LE, Kussmann J (2010) Monte Carlo simulations of single- and multistep enzyme-catalyzed reaction sequences: effects of diffusion, cell size, enzyme fluctuations, colocalization, and segregation. J Chem Phys 133:034104

  • Bahrami AH, Raatz M, Agudo-Canalejo J, Michel R, Curtis EM, Hall CK, Gradzielski M, Lipowsky R, Weikl TR (2014) Wrapping of nanoparticles by membranes. Adv Coll Interf Sci 208:214–224

    Article  CAS  Google Scholar 

  • Bally M, Gunnarsson A, Svensson L, Larson G, Zhdanov VP, Höök F (2011) Interaction of single virus-like particles with vesicles containing glycosphingolipids. Phys Rev Lett 107:188103

  • Bally M, Dimitrievski K, Larson G, Zhdanov VP, Höök F (2012) Interaction of virions with membrane glycolipids. Phys Biol 9:026011

  • Barrow E, Nicola AV, Liu J (2013) Multiscale perspectives of virus entry via endocytosis. Virol J 10:177

  • Berg OG (1978) On diffusion controlled dissociation. Chem Phys 31:47–57

    Article  CAS  Google Scholar 

  • Cann AJ (2012) Principles of molecular virology. Elsevier, Amsterdam

    Google Scholar 

  • Chen JX, Kapral R (2011) Mesoscopic dynamics of diffusion-influenced enzyme kinetics. J Chem Phys 134:044503

  • Chou T, D’Orsogna MR (2007) Multistage adsorption of diffusing macromolecules and viruses. J Chem Phys 127:105101

  • Collins FC, Kimball GE (1949) Diffusion-controlled reaction rates. J Coll Sci 4:425–437

    Article  CAS  Google Scholar 

  • Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford

    Google Scholar 

  • Di Ventura B, Lemerle C, Michalodimitrakis K, Serrano L (2006) From in vivo to in silico biology and back. Nature 443:527–533

    Article  PubMed  Google Scholar 

  • Doktorov AB, Kipriyanov AA (2007) Deviation from the kinetic law of mass action for reactions induced by binary encounters in liquid solutions. J Phys Condens Matter 19:065136

  • Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779

    Article  CAS  PubMed  Google Scholar 

  • Echeverria C, Kapral R (2014) Diffusional correlations among multiple active sites in a single enzyme. Phys Chem Chem Phys 16:6211–6216

    Article  CAS  PubMed  Google Scholar 

  • Fange D, Berg OG, Sjöberg P, Elf J (2010) Stochastic reaction-diffusion kinetics in the microscopic limit. Proc Nat Acad Sci USA 107:19820–19825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gibbons MM, Chou T, D’Orsogna MR (2010) Diffusion-dependent mechanisms of receptor engagement and viral entry. J Phys Chem B 114:15403–15412

    Article  CAS  PubMed  Google Scholar 

  • Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49:3280–3294

    Article  CAS  Google Scholar 

  • Gunnarsson A, Jönsson P, Zhdanov VP, Höök F (2009) Kinetic and thermodynamic characterization of single-mismatch discrimination using single-molecule imaging. Nucl Acid Res 37:e99

  • Gunnarsson A, Dexlin L, Wallin P, Svedhem S, Jonsson P, Wingren C, Höök F (2011) Kinetics of ligand binding to membrane receptors from equilibrium fluctuation analysis of single binding events. J Am Chem Soc 133:14852–14855

    Article  CAS  PubMed  Google Scholar 

  • Handel A, Akin V, Pilyugin SS, Zarnitsyna V, Antia R (2014) How sticky should a virus be? The impact of virus binding and release on transmission fitness using influenza as an example. J Roy Soc Interf 11:20131083

  • Jackman JA, Choi J-H, Zhdanov VP, Cho H-J (2013) Influence of osmotic pressure on adhesion of lipid vesicles to solid supports. Langmuir 29:11375–11384

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Shin KJ (2007) Diffusion influence on Michaelis–Menten kinetics: II. The low substrate concentration limit. J Phys Condens Matter 19:065137

  • Klann M, Koeppl H (2013) Reaction schemes, escape times and geminate recombinations in particle-based spatial simulations of biochemical reactions. Phys Biol 10:046005

  • Kramers HA (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7:284–304

    Article  CAS  Google Scholar 

  • Landau LD, Lifshitz EM (1989) Fluid mechanics, sec 60. Pergamon Press, Oxford

  • Landau LD, Lifshitz EM (1995) Electrodynamics of continuous media, sec 5. Pergamon Press, Oxford

  • Mercer J, Schelhaas M, Helenius A (2010) Virus entry by endocytosis. Ann Rev Biochem 79:803–833

    Article  CAS  PubMed  Google Scholar 

  • Mereghetti P, Kokh D, McCammon JA, Wade RC (2011) Diffusion and association processes in biological systems: theory, computation and experiment. BMC Biophys 4:2

  • Mulquiney PJ, Kuchel PW (2003) Modeling metabolism with mathematica. CRC Press, Boca Raton

    Book  Google Scholar 

  • Nowak SA, Chou T (2009) Mechanisms of receptor/coreceptor-mediated entry of enveloped viruses. Biophys J 96:2624–2636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park S, Agmon N (2008) Concentration profiles near an activated enzyme. J Phys Chem B 112:12104–12114

    Article  CAS  PubMed  Google Scholar 

  • Petosa AR, Jaisi DP, Quevedo IR, Elimelech M, Tufenkji N (2010) Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol 44:6532–6549

    Article  CAS  PubMed  Google Scholar 

  • Perni S, Preedy EC, Prokopovich P (2014) Success and failure of colloidal approaches in adhesion of microorganisms to surfaces. Adv Coll Interf Sci 206:265–274

    Article  CAS  Google Scholar 

  • Rice SA (1985) Diffusion-limited reactions; comprehensive chemical kinetics, vol 25. Elsevier, Amsterdam

    Google Scholar 

  • Schofield J, Inder P, Kapral R (2012) Modeling of solvent flow effects in enzyme catalysis under physiological conditions. J Chem Phys 136:205101

  • Simonsson L, Höök F (2012) Formation and diffusivity characterization of supported lipid bilayers with complex lipid compositions. Langmuir 28:10528–10533

    Article  CAS  PubMed  Google Scholar 

  • Tabaei SR, Choi J-H, Zan GH, Zhdanov VP, Cho N-J (2014) Solvent-assisted lipid bilayer formation on silicon dioxide and gold. Langmuir 30:10363–10373

    Article  CAS  PubMed  Google Scholar 

  • Vacha R, Martinez-Veracoechea FJ, Frenkel D (2011) Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett 11:5391–5395

    Article  CAS  PubMed  Google Scholar 

  • von Smoluchowski M (1917) Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösnngen. Zeitschrift phys Chem 92:129–168

    Google Scholar 

  • Yamauchi Y, Helenius A (2013) Virus entry at a glance. J Cell Sci 126:1289–1295

    Article  CAS  PubMed  Google Scholar 

  • Zhdanov VP, Kasemo B (1998) Monte Carlo simulation of the kinetics of protein adsorption. Proteins Struct Funct Genet 30:177–182

    Article  CAS  PubMed  Google Scholar 

  • Zhdanov VP, Keller CA, Glasmästar K, Kasemo B (2000) Simulation of adsorption kinetics of lipid vesicles. J Chem Phys 112:900–909

    Article  CAS  Google Scholar 

  • Zhdanov VP, Kasemo B (2010) Diffusion-limited kinetics of adsorption of biomolecules on supported nanoparticles. Coll Surf B Biointerf 76:28–31

    Article  CAS  Google Scholar 

  • Zhdanov VP, Gunnarsson A, Höök F (2010) Simulation of dissociation of DNA duplexes attached to the surface. Cent Eur J Phys 8:883–892

    Article  CAS  Google Scholar 

  • Zhdanov VP (2012) Inhibition of the receptor-mediated virion attachment to a lipid membrane. Cent Eur J Phys 10:1210–1215

    Article  CAS  Google Scholar 

  • Zhdanov VP (2013) Physical aspects of the initial phase of endocytosis. Phys Rev E 88:064701

Download references

Acknowledgments

This work was supported by the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Zhdanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhdanov, V.P., Höök, F. Diffusion-limited attachment of large spherical particles to flexible membrane-immobilized receptors. Eur Biophys J 44, 219–226 (2015). https://doi.org/10.1007/s00249-015-1016-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1016-y

Keywords

Navigation