Skip to main content

Advertisement

Log in

Analysis of multiple physical parameters for mechanical phenotyping of living cells

  • ORIGINAL PAPER
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Since the cytoskeleton is known to regulate many cell functions, an increasing amount of effort to characterize cells by their mechanical properties has occured. Despite the structural complexity and dynamics of the multicomponent cytoskeleton, mechanical measurements on single cells are often fit to simple models with two to three parameters, and those parameters are recorded and reported. However, different simple models are likely needed to capture the distinct mechanical cell states, and additional parameters may be needed to capture the ability of cells to actively deform. Our new approach is to capture a much larger set of possibly redundant parameters from cells’ mechanical measurement using multiple rheological models as well as dynamic deformation and image data. Principal component analysis and network-based approaches are used to group parameters to reduce redundancies and develop robust biomechanical phenotyping. Network representation of parameters allows for visual exploration of cells’ complex mechanical system, and highlights unexpected connections between parameters. To demonstrate that our biomechanical phenotyping approach can detect subtle mechanical differences, we used a Microfluidic Optical Cell Stretcher to mechanically stretch circulating human breast tumor cells bearing genetically-engineered alterations in c-src tyrosine kinase activation, which is known to influence reattachment and invasion during metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albert R, Barabàsi A (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47–97

    Article  Google Scholar 

  • Balland M, Desprat N, Icard D, Féréol S, Asnacios A, Browaeys J, Hénon S, Gallet F (2006) Power laws in microrheology experiments on living cells: comparative analysis and modeling. Phys Rev E 74(2):021911–1–17

    Google Scholar 

  • Balzer E, Whipple R, Thompson K, Boggs A, Slovic J, Cho E, Matrone M, Yoneda T, Mueller S, Martin S (2010) c-src differentially regulates the functions of microtentacles and invadopodia. Oncogene 29(48):6402–6408

    Article  PubMed  CAS  Google Scholar 

  • Barrat A, Barthèlemy M, Pastor-Satorras R, Vespignani A (2004) The architecture of complex weighted networks. Proc Natl Acad Sci USA 101(11):3747–3752

    Article  PubMed  CAS  Google Scholar 

  • Boyde L, Chalut K, Guck J (2009) Interaction of gaussian beam with near-spherical particle: an analytic-numerical approach for assessing scattering and stresses. J Opt Soc Am A 26(8):1814–1826

    Article  Google Scholar 

  • Brangwynne C, MacKintosh F, Kumar S, Geisse N, Talbot J, Mahadevan L, Parker K, Ingber D, Weitz D (2006) Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J Cell Biol 173(5):733–741

    Article  PubMed  CAS  Google Scholar 

  • Clauset A, Moore C, Newman M (2008) Hierarchical structure and the prediction of missing links in networks. Nature 453(7191):98–101

    Article  PubMed  CAS  Google Scholar 

  • Desprat N, Richert A, Simeon J, Asnacios A (2005) Creep function of a single living cell. Biophys J 88(3):2224–2233

    Article  PubMed  CAS  Google Scholar 

  • Elson E (1988) Cellular mechanics as an indicator of cytoskeletal structure and function. Annu Rev Biophys Biophys Chem 17:397–430

    Article  PubMed  CAS  Google Scholar 

  • Fabry B, Maksym G, Butler J, Glogauer M, Navajas D, Fredberg J (2001) Scaling the microrheology of living cells. Phys Rev Lett 87(14):148102–1–4

    Google Scholar 

  • Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS (2007) Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5(1):e8

    Article  PubMed  Google Scholar 

  • Fritsch A, Höckel M, Kiessling T, Nnetu KD, Wetzel F, Zink M, Käs JA (2010) Are biomechanical changes necessary for tumour progression. Nat Phys 6(10):730–732

    Article  CAS  Google Scholar 

  • Fuchs E, Cleveland DW (1998) A structural scaffolding of intermediate filaments in health and disease. Science 279(5350):514–519

    Article  PubMed  CAS  Google Scholar 

  • Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99(12):7821–7826

    Article  PubMed  CAS  Google Scholar 

  • Glotzbach J, Januszyk M, Vial I, Wong V, Gelbard A, Kalisky T, Thangarajah H, Longaker MT, Quake SR, Chu G, Gurtner GC (2011) An information theoretic, microfluidic-based single cell analysis permits identification of subpopulations among putatively homogeneous stem cells. PloS ONE 6(6):e21,211

    Article  CAS  Google Scholar 

  • Guck J, Ananthakrishnan R, Mahmood H, Moon T, Cunningham C, Käs J (2001) The optical stretcher: a novel laser tool to micromanipulate cells. Biophys J 81(2):767–784

    Article  PubMed  CAS  Google Scholar 

  • Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Käs J, Ulvick S, Bilby C (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88(5):3689–3698

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Kamm R, Lee R (2004) Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am J Physiol-Cell Physiol 287(1):C1

    Article  PubMed  CAS  Google Scholar 

  • Jain A, Murty M, Flynn P (1999) Data clustering: a review. ACM Comput Surv (CSUR) 31(3):264–323

    Article  Google Scholar 

  • Jolliffe T (2002) Principal component analysis. Springer, Heidelberg

    Google Scholar 

  • Jonas O, Mierke C, Käs J (2011) Invasive cancer cell lines exhibit biomechanical properties that are distinct from their noninvasive counterparts. Soft Matter 87:669–676

    Google Scholar 

  • Lautenschläger F, Paschke S, Schinkinger S, Bruel A, Beil M, Guck J (2009) The regulatory role of cell mechanics for migration of differentiating myeloid cells. Proc Natl Acad Sci USA 106(37):15,696

    Article  Google Scholar 

  • Lim C, Zhou E, Quek S (2006) Mechanical models for living cells—a review. J Biomech 39(2):195–216

    Article  PubMed  CAS  Google Scholar 

  • Lincoln B, Schinkinger S, Travis K, Wottawah F, Ebert S, Sauer F, Guck J (2007) Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications. Biomed Microdevices 9(5):703–710

    Article  PubMed  Google Scholar 

  • Maloney J, Nikova D, Lautenschläger F, Clarke E, Langer R, Guck J, Van Vliet K (2010) Mesenchymal stem cell mechanics from the attached to the suspended state. Biophys J 99(8):2479–2487

    Article  PubMed  CAS  Google Scholar 

  • Matrone M, Whipple R, Balzer E, Martin S (2010) Microtentacles tip the balance of cytoskeletal forces in circulating tumor cells. Cancer Res 70(20):7737–7741

    Article  PubMed  CAS  Google Scholar 

  • Mauritz J, Tiffert T, Seear R, Lautenschläger F, Esposito A, Lew V, Guck J, Kaminski C (2010) Detection of plasmodium falciparum-infected red blood cells by optical stretching. J Biomed 15(3):0305171–0305173

    Google Scholar 

  • Mierke C, Rösel D, Fabry B, Brábek J (2008) Contractile forces in tumor cell migration. Eur J Cell Biol 87(8-9):669–676

    Article  PubMed  CAS  Google Scholar 

  • Mofrad M (2009) Rheology of the cytoskeleton. Annu Rev Fluid Mech 41:433–453

    Article  Google Scholar 

  • Mogilner A, Keren K (2009) The shape of motile cells. Curr Biol 19(17):R762–R771

    Article  PubMed  CAS  Google Scholar 

  • Montell DJ (2008) Morphogenetic cell movements: diversity from modular mechanical properties. Science 322(5907):1502–1505

    Article  PubMed  CAS  Google Scholar 

  • Newman M (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103(23):8577–8582

    Article  PubMed  CAS  Google Scholar 

  • Ramaekers F, Bosman F (2004) The cytoskeleton and disease. J Pathol 204(4):351–354

    Article  PubMed  CAS  Google Scholar 

  • Strogatz S (2001) Exploring complex networks. Nature 410(6825):268–276

    Article  PubMed  CAS  Google Scholar 

  • Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Mater 3(4):413–438

    Google Scholar 

  • Vogel V, Sheetz M (2009) Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways. Curr Opin Cell Biol 21:38–46

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Botvinick EL, Zhao Y, Berns MW, Usami S, Tsien RY, Chien S (2005) Visualizing the mechanical activation of src. Nature 434(7036):1040–1045

    Article  PubMed  CAS  Google Scholar 

  • Weaver V (2009) Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev 28(1–2):113–127

    PubMed  Google Scholar 

Download references

Acknowledgements

Support from a DOD Era of Hope Scholar award (BC100675) is gratefully acknowledged. M.H. was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program. T.K. was financially supported by the Deutsche Forschungsgemeinschaft within the Graduate School BuildMoNa. We are grateful to S. Pawlizak and T. Händler for providing Fig. 1a. Funded in parts by the European Union and the Free State of Saxony within the research program "Theranostik", and by the German Federal Ministry of Education and Research (BMBF) under the project "Agescreen", grant identifier 13N1093.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Kießling.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (2504 KB)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kießling, T.R., Herrera, M., Nnetu, K.D. et al. Analysis of multiple physical parameters for mechanical phenotyping of living cells. Eur Biophys J 42, 383–394 (2013). https://doi.org/10.1007/s00249-013-0888-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-013-0888-y

Keywords

Navigation