Skip to main content
Log in

Cytochrome c signalosome in mitochondria

  • ORIGINAL PAPER
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Cytochrome c delicately tilts the balance between cell life (respiration) and cell death (apoptosis). Whereas cell life is governed by transient electron transfer interactions of cytochrome c inside the mitochondria, the cytoplasmic adducts of cytochrome c that lead to cell death are amazingly stable. Interestingly, the contacts of cytochrome c with its counterparts shift from the area surrounding the heme crevice for the redox complexes to the opposite molecule side when the electron flow is not necessary. The cytochrome c signalosome shows a higher level of regulation by post-translational modifications—nitration and phosphorylation—of the hemeprotein. Understanding protein interfaces, as well as protein modifications, would puzzle the mitochondrial cytochrome c-controlled pathways out and enable the design of novel drugs to silence the action of pro-survival and pro-apoptotic partners of cytochrome c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Adx:

Adrenodoxin

AdxR:

NADPH-dependent adrenodoxin reductase

bc 1 :

Cytochrome bc 1 complex

CB:

Cytochrome binding

Cb 5 :

Cytochrome b 5

Cb 5R:

NADH-dependent cytochrome b 5 reductase

Cc :

Cytochrome c

Cc 552 :

Cytochrome c 552

CcO:

Cytochrome c oxidase

CcP:

Cytochrome c peroxidase

CH1:

Collagen homologous 1

CH2:

Collagen homologous 2

CL:

CardioLipin

ET:

Electron transfer

GALDH:

l-GAlactono-1,4-Lactone DeHydrogenase

IMM:

Inner mitochondrial membrane

IMS:

Intermembrane mitochondrial space

n-Cc :

Nitrated cytochrome c

NMR:

Nuclear magnetic resonance

OMM:

Outer mitochondrial membrane

p-Cc :

Phosphorylated cytochrome c

PCD:

Programmed cell death

PKCβ:

Protein kinase C β

PKCδ:

Protein kinase C δ

PRE:

Paramagnetic relaxation enhancement

PTB:

PhosphoTyrosine binding

R(N)OS:

Reactive (nitrogen)oxygen species

Sco:

Synthesis of cytochrome c oxidase

SH2:

Src homology 2

WT:

Wild-type

References

  • Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW (2002) Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9:423–432

    PubMed  CAS  Google Scholar 

  • Acin-Perez R, Hoyos B, Gong J, Vinogradov V, Fischman DA, Leitges M, Borhan B, Starkov A, Manfredi G, Hammerling U (2010) Regulation of intermediary metabolism by the PKCδ signalosome in mitochondria. FASEB J 24:5033–5042

    PubMed  CAS  Google Scholar 

  • Banci I, Bertini I, Felli IC, Krippahl L, Kubicek K, Moura JJG, Rosato A (2003) A further investigation of the cytochrome b 5–cytochrome c complex. J Biol Inorg Chem 8:777–786

    PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, Cavallaro G, Ciofi-Baffoni S (2011a) Seeking the determinants of the elusive functions of Sco proteins. FEBS J 278:2244–2262

    PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, Ciofi-Baffoni S, Kozyreva T, Mori M, Wang S (2011b) Sco proteins are involved in electron transfer processes. J Biol Inorg Chem 16:391–403

    PubMed  CAS  Google Scholar 

  • Bashir Q, Volkov AN, Ullmann GM, Ubbink M (2010) Visualization of the encounter ensemble of the transient electron transfer complex of cytochrome c and cytochrome c peroxidase. J Am Chem Soc 132:241–247

    PubMed  CAS  Google Scholar 

  • Bashir Q, Scanu S, Ubbink M (2011) Dynamics in electron transfer protein complexes. FEBS J 278:1391–1400

    PubMed  CAS  Google Scholar 

  • Batthyány C, Souza JM, Durán R, Cassina A, Cerveñansky C, Radi R (2005) Time course and site(s) of cytochrome c tyrosine nitration by peroxynitrite. Biochemistry 44:8038–8046

    PubMed  Google Scholar 

  • Bayir H, Fadeel B, Palladino MJ, Witasp E, Kurnikov IV, Tyurina YY, Tyurin VA, Amoscato AA, Jiang J, Kochanek PM, DeKosky ST, Greenberger JS, Shvedova AA, Kagan VE (2006) Apoptotic interactions of cytochrome c: redox flirting with anionic phospholipids within and outside of mitochondria. Biochim Biophys Acta 1757:648–659

    PubMed  CAS  Google Scholar 

  • Belikova NA, Vladimirov YA, Osipov AN, Kapralov AA, Tyurin VA, Potapovich MV, Basova LV, Peterson J, Kurnikov IV, Kagan VE (2006) Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes. Biochemistry 45:4998–5009

    PubMed  CAS  Google Scholar 

  • Bernardi P, Azzone GF (1981) Cytochrome c as an electron shuttle between the outer and inner mitochondrial membrane. J Biol Chem 256:7187–7192

    PubMed  CAS  Google Scholar 

  • Berry EA, Guergova-Kuras M, Huang LS, Crofts AR (2000) Structure and function of cytochrome bc complexes. Annu Rev Biochem 69:1005–1075

    PubMed  CAS  Google Scholar 

  • Bertini I, Cavallaro G, Rosato R (2005) A structural model for the adduct between cytochrome c and cytochrome c oxidase. J Biol Inorg Chem 10:613–624

    PubMed  CAS  Google Scholar 

  • Bertini I, Chevance S, Del Conte R, Lalli D, Turano P (2011a) The anti-apoptotic Bcl-xL protein, a new piece in the puzzle of cytochrome c interactome. PLos One. doi:10.1371/journal.pone.0018329

  • Bertini I, Cavallaro G, Rosato A (2011b) Principles and patterns in the interaction between mono-heme cytochrome c and its partners in electron transfer processes. Metallomics. doi:10.1039/c0mt00108b

  • Bihlmaier K, Mesecke N, Terzyiska N, Bien M, Hell K, Herrmann JM (2007) The disulfide relay system of mitochondria is connected to the respiratory chain. J Cell Biol 179:389–395

    PubMed  CAS  Google Scholar 

  • Cai J, Yang J, Jones DP (1998) Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta 1366:139–149

    PubMed  CAS  Google Scholar 

  • Cassina AM, Hodara R, Souza JM, Thomson L, Castro L, Ischiropoulos H, Freeman BA, Radi R (2000) Cytochrome c nitration by peroxynitrite. J Biol Chem 275:21409–21415

    PubMed  CAS  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  • Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278:36027–36031

    PubMed  CAS  Google Scholar 

  • Chen YR, Chen CL, Chen W, Zweier JL, Augusto O, Radi R, Mason RP (2004) Formation of protein tyrosine ortho-semiquinone radical and nitrotyrosine from cytochrome c-derived tyrosyl radical. J Biol Chem 279:18054–18062

    PubMed  CAS  Google Scholar 

  • Cortese J, Voglino AL, Hackenbrock CR (1995) Persistence of cytochrome c binding to membranes at physiological mitochondrial intermembrane space ionic strength. Biochim Biophys Acta 1228:216–228

    PubMed  Google Scholar 

  • Dabir DV, Leverich EP, Kim S-K, Tsai FD, Hirasawa M, Knaff DB, Koehler CM (2007) A role for cytochrome c and cytochrome c peroxidase in electron shuttling from Erv1. EMBO J 26:4801–4811

    PubMed  CAS  Google Scholar 

  • Daum G (1985) Lipids of mitochondria. Biochim Biophys Acta 822:1–42

    PubMed  CAS  Google Scholar 

  • Deep S, Im S-C, Zuiderweg ERP, Waskell L (2005) Characterization and calculation of a cytochrome c–cytochrome b 5 complex using NMR data. Biochemistry 44:10654–10668

    PubMed  CAS  Google Scholar 

  • Demel RA, Jordi W, Lambrechts H, van Damme H, Hovius R, de Kruijff B (1989) Differential interactions of apo- and holocytochrome c with acidic membrane lipids in model systems and the implications for their import into mitochondria. J Biol Chem 264:3988–3997

    PubMed  CAS  Google Scholar 

  • Díaz-Moreno I, De La Rosa MA (2011a) Transient interactions between biomolecules. Eur Biophys J. doi:10.1007/s00249-011-0728-x

  • Díaz-Moreno I, De La Rosa MA (2011b) Transient interactions in metalloproteins. FEBS J. doi:10.1111/j.1742-4658.2011.08065.x

  • Díaz-Moreno I, García-Heredia JM, Díaz-Quintana A, Teixeira M, De La Rosa MA (2011c) Nitration of tyrosines 46 and 48 induces the specific degradation of cytochrome c upon change of the heme iron state to high-spin. Biochem Biophys Acta Bioenerg. doi:10.1016/j.bbabio.2011.09.012

  • Dudkina NV, Kudryashev M, Stahlberg H, Boekema EJ (2011) Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography. Proc Natl Acad Sci USA 108:15196–15200

    PubMed  CAS  Google Scholar 

  • Durham B, Fairris JL, McLean M, Millett F, Scott JR, Sligar SG, Willie A (1995) Electron transfer from cytochrome b 5 to cytochrome c. J Bioenerg Biomembr 27:331–340

    PubMed  CAS  Google Scholar 

  • Eble KS, Coleman WB, Hantgan RR, Cunningham CC (1990) Tightly associated cardiolipin in the bovine heart mitochondrial ATP synthase as analyzed by 31P nuclear magnetic resonance spectroscopy. J Biol Chem 265:19434–19440

    PubMed  CAS  Google Scholar 

  • Engstrom G, Rajagukguk R, Saunders AJ, Patel CN, Rajagukguk S, Merbitz-Zahradnik T, Xiao K, Pielak GJ, Trumpower B, Yu C-A, Yu L, Durham B, Millet F (2003) Design of a ruthenium-labeled cytochrome c derivative to study electron transfer with the cytochrome bc 1 complex. Biochemistry 42:2816–2824

    PubMed  CAS  Google Scholar 

  • Fry M, Green DE (1981) Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. J Biol Chem 256:1874–1880

    PubMed  CAS  Google Scholar 

  • García-Heredia JM, Díaz-Moreno I, Nieto PM, Orzáez M, Kocanis S, Teixeira M, Pérez-Payá E, Díaz-Quintana A, De la Rosa MA (2010) Nitration of tyrosine 74 prevents human cytochrome c to play a key role in apoptosis signaling by blocking caspase-9 activation. Biochem Biophys Acta Bioenerg 1797:981–993

    Google Scholar 

  • García-Heredia JM, Díaz-Quintana A, Salzano M, Orzáez M, Pérez-Payá E, Teixeira M, De la Rosa MA, Díaz-Moreno I (2011) Tyrosine phosphorylation turns alkaline transition into a biologically relevant process and makes human cytochrome c behave as an anti-apoptotic switch. J Biol Inorg Chem. doi:10.1007/s00775-011-0804-9

  • Giles SS, Perfect JR, Cox GM (2005) Cytochrome c peroxidase contributes to the antioxidant defense of Cryptococcus neoformans. Fungal Genet Biol 42:20–29

    PubMed  CAS  Google Scholar 

  • Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, Pinton P, Rizzuto R, Bernardi P, Paolucci F, Pelicci PG (2005) Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122:221–233

    PubMed  CAS  Google Scholar 

  • Gomez B Jr, Robinson NC (1999) Phospholipase digestion of bound cardiolipin reversibly inactivates bovine cytochrome bc 1. Biochemistry 38:9031–9038

    PubMed  CAS  Google Scholar 

  • Haines TH, Dencher NA (2002) Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Lett 528:35–39

    PubMed  CAS  Google Scholar 

  • Hannemann F, Guyot A, Zöllner A, Müller JJ, Heinemann U, Bernhardt R (2009) The dipole moment of the electron carrier adrenodoxin is not critical for redox partner interaction and electron transfer. J Inorg Biochem 103:997–1004

    PubMed  CAS  Google Scholar 

  • Heinemeyer J, Braun H-P, Boekema EJ, Kouřil R (2007) A structural model of the cytochrome c reductase/oxidase supercomplex from yeast mitochondria. J Biol Chem 282:12240–12248

    PubMed  CAS  Google Scholar 

  • Hüttemann M, Pecina P, Rainbolt M, Sanderson TH, Kagan VE, Samavati L, Doan JW, Lee I (2011a) The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: from respiration to apoptosis. Mitochondrion 11:369–381

    PubMed  Google Scholar 

  • Hüttemann M, Helling S, Sanderson TH, Sinkler C, Samavati L, Mahapatra G, Varughese A, Lu G, Liu J, Ramzan R, Vogt S, Grossman LI, Doan JW, Marcus K, Lee I (2011b) Regulation of mitochondrial respiration and apoptosis through cell signaling: cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Biochim Biophys Acta. doi:10.1016/j.bbabio.2011.07.001

  • Jeng WY, Chen CY, Chang HC, Chuang WJ (2002) Expression and characterization of recombinant human cytochrome c in E. coli. J Bioenerg Biomembr 34:423–431

    PubMed  CAS  Google Scholar 

  • Jiang H, English AM (2006) Phenotypic analysis of the ccp1Δ and ccp1Δ-ccp1 W191F mutant strains of Saccharomyces cerevisiae indicates that cytochrome c peroxidase functions in oxidative-stress signaling. J Inorg Biochem 100:1996–2008

    PubMed  CAS  Google Scholar 

  • Kagan VE, Borisenko GG, Tyurina YY, Tyurin VA, Jiang J, Potapovich AI, Kini V, Amoscato AA, Fujii Y (2004) Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Rad Biol Med 37:1963–1985

    PubMed  CAS  Google Scholar 

  • Kagan VE, Tyurina YY, Batir H, Chu CT, Kapralov AA, Vlasova II, Belikova NA, Tyurin VA, Amoscato A, Epperly M, Greenberger J, DeKosky S, Shvedova AA, Jiang J (2006) The “pro-apoptotic genies” get out of mitochondria: oxidative lipidomics and redox activity of cytochrome c/cardiolipin complexes. Chem Biochem Interact 163:15–28

    CAS  Google Scholar 

  • Kalanxhi E, Wallace CJ (2007) Cytochrome c impaled: investigation of the extended lipid anchorage of a soluble protein to mitochondrial membrane models. Biochem J 407:179–187

    PubMed  CAS  Google Scholar 

  • Kapralov AA, Yanamala N, Tyurina YY, Castro L, Samhan-Arias AK, Vladimirov YA, Maeda A, Mylnikov D, Demicheli V, Tortora V, Klein-Seetharaman J, Radi R, Kagan VE (2011) Topography of tyrosine residues and their involvement in peroxidation of polyunsaturated cardiolipin in cytochrome c/cardiolipin peroxidase complexes. Biochim Biophys Acta 1808:2147–2155

    PubMed  CAS  Google Scholar 

  • Kong SK, Yim MB, Stadtman ER, Chock PB (1996) Peroxynitrite disables the tyrosine phosphorylation regulatory mechanism: lymphocyte-specific tyrosine kinase fails to phosphorylate nitrated cdc2(6–20)NH2 peptide. Proc Natl Acad Sci USA 93:33777–33782

    Google Scholar 

  • Lambeth JD, Kamin H (1979) Adrenodoxin reductase: adrenodoxin complex flavin to iron-sulfur transfer as the rate-limiting step in the NADPH-cytochrome c reductase reaction. J Biol Chem 254:2766–2774

    PubMed  CAS  Google Scholar 

  • Lange C, Hunte C (2002) Crystal structure of the yeast cytochrome bc 1 complex with its bound substrate cytochrome c. Proc Natl Acad Sci USA 99:2800–2805

    PubMed  CAS  Google Scholar 

  • Lee I, Salomon AR, Yu K, Doan JW, Grossman LI, Hüttemann M (2006) New prospects for an old enzyme: mammalian cytochrome c is tyrosine-phosphorylated in vivo. Biochemistry 47:9121–9128

    Google Scholar 

  • Leesch VW, Bujous J, Mauk AG, Hoffman BM (2000) Cytochrome c peroxidase-cytochrome c complex: locating the second binding domain on cytochrome c peroxidase with site-directed mutagenesis. Biochemistry 39:10132–10139

    PubMed  CAS  Google Scholar 

  • Leferink NGH, van der Berg WAM, van Berkel WJH (2008) l-Galactono-γ-lactone dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis. FEBS J 275:713–726

    PubMed  CAS  Google Scholar 

  • Leferink NGH, Fraaije MW, Joosten H-J, Schaap PJ, Mattevi A, van Berkel WJH (2009) Identification of a gatekeeper residue that prevents dehydrogenases from acting as oxidases. J Biol Chem 284:4392–4397

    PubMed  CAS  Google Scholar 

  • Louie GV, Brayer GD (1990) High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c. J Mol Biol 214:527–555

    PubMed  CAS  Google Scholar 

  • Matlib MA, O’Brien PJ (1976) Properties of rat liver mitochondria with intermembrane cytochrome c. Arch Biochem Biophys 173:27–33

    PubMed  CAS  Google Scholar 

  • Mei H, Geren L, Miller MA, Durham B, Millett F (2002) Role of the low-affinity binding site in electron transfer from cytochrome c to cytochrome c peroxidase. Biochemistry 41:3968–3976

    PubMed  CAS  Google Scholar 

  • Migliaccio E, Mele S, Salcini AE, Pelicci G, Lai K-MV, Superti-Furga G, Pawson T, Di Fiore PP, Lanfrancone L, Pelicci PG (1997) Opposite effects of the p52Shc/p46Shc and p66Shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway. EMBO J 16:706–716

    PubMed  CAS  Google Scholar 

  • Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, Pelicci PG (1999) The p66Shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313

    PubMed  CAS  Google Scholar 

  • Millett F, Miller MA, Geren L, Durham B (1995) Electron transfer between cytochrome c and cytochrome c peroxidase. J Bioenerg Biomembr 27:341–351

    PubMed  CAS  Google Scholar 

  • Moore GR, Pettigrew GW (1990) Cytochromes c. Evolutionary, structural, and physicochemical aspects. Springer, New York

    Google Scholar 

  • Mustonen P, Virtanen JA, Somerharju PJ, Kinnunen PKJ (1987) Binding of cytochrome c to liposomes as revealed by the quenching of fluorescence from pyrene-labeled phospholipids. Biochemistry 26:2991–2997

    PubMed  CAS  Google Scholar 

  • Nyola A, Hunte C (2008) A structural analysis of the transient interaction between the cytochrome bc 1 complex and its substrate cytochrome c. Biochem Soc Trans 36:981–985

    PubMed  CAS  Google Scholar 

  • Orrenius S (2007) Reactive oxygen species in mitochondria-mediated cell death. Drugs Metab Res 39:443–455

    CAS  Google Scholar 

  • Orsini F, Migliaccio E, Moroni M, Contursi C, Raker VA, Piccini D, Martin-Padura I, Pelliccia G, Trinei M, Bono M, Puri C, Tacchetti C, Ferrini M, Mannucci R, Nicoletti I, Lanfrancone L, Giorgio M, Pelicci PG (2004) The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential. J Biol Chem 279:25689–25695

    PubMed  CAS  Google Scholar 

  • Ott M, Robertson J, Gogvadze V, Zhivotovsky B, Orrenius S (2002) Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci USA 99:1259–1263

    PubMed  CAS  Google Scholar 

  • Oursler MJ, Bradley EW, Elfering SL, Giulivi C (2005) Native, not nitrated, cytochrome c and mitochondria-derived hydrogen peroxide drive osteoclast apoptosis. Am J Physiol Cell Physiol 288:156–168

    Google Scholar 

  • Papa S, Capitanio N, Capitanio G (2004) A cooperative model for proton pumping in cytochrome c oxidase. Biochem Biophys Acta 1655:353–364

    PubMed  CAS  Google Scholar 

  • Pearl NM, Jacobson T, Arisa M, Vitello LB, Erman JE (2007) Effect of single-site charge-reversal mutations on the catalytic properties of yeast cytochrome c peroxidase: mutations near the high-affinity cytochrome c binding site. Biochemistry 46:8263–8272

    PubMed  CAS  Google Scholar 

  • Pearl NM, Jacobson T, Meyen C, Clementz AG, Ok EY, Choi E, Wilson K, Vitello LB, Erman JE (2008) Effect of single-site charge-reversal mutations on the catalytic properties of yeast cytochrome c peroxidase: evidence for a single, catalytically active, cytochrome c binding domain. Biochemistry 47:2766–2775

    PubMed  CAS  Google Scholar 

  • Pecina P, Borisenko GG, Belikova NA, Tyurina Y, Pecinova A, Lee I, Samhan-Arias AK, Przyklenk K, Kagan VE, Huttemann M (2010) Phosphomimetic substitution of cytochrome c tyrosine 48 decreases respiration and binding to cardiolipin and abolishes ability to trigger downstream caspase activation. Biochemistry 49:6705–6710

    PubMed  CAS  Google Scholar 

  • Pelicci G, Lanfrancone L, Grignani F, McGlade J, Cavallo F, Forni G, Nicoletti I, Grignani F, Pawson T, Pelicci PG (1992) A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell 70:93–104

    PubMed  CAS  Google Scholar 

  • Pellegrini M, Pacini S, Baldari CT (2005) p66Shc: the apoptotic side of Shc proteins. Apoptosis 10:13–18

    PubMed  CAS  Google Scholar 

  • Pelletier H, Kraut J (1992) Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science 258:1748–1755

    PubMed  CAS  Google Scholar 

  • Pereverzev MO, Vygodina TV, Konstantinov AA, Skulachev VP (2003) Cytochrome c, an ideal antioxidant. Biochem Soc Trans 31:1312–1315

    PubMed  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    PubMed  CAS  Google Scholar 

  • Pettigrew GW, Prazeres S, Costa C, Palma N, Krippahl L, Moura I, Moura JJG (1999) The structure of an electron transfer complex containing a cytochrome c and a peroxidase. J Biol Chem 274:11383–11389

    PubMed  CAS  Google Scholar 

  • Pinton P, Rimessi A, Marchi S, Orsini F, Migliaccio E, Giorgio M, Contursi C, Minucci S, Mantovani F, Wieckowski MR, Del Sal G, Pelicci PG, Rizzuto R (2007) Protein kinase C β and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science 315:659–663

    PubMed  CAS  Google Scholar 

  • Poulos TL, Freer ST, Alden RA, Edwards SJ, Skoglands U, Takio K, Eriksson B, Xuong N-H, Yonetani T, Kraut J (1980) The crystal structure of cytochrome c peroxidase. J Biol Chem 255:575–580

    PubMed  CAS  Google Scholar 

  • Prudêncio M, Ubbink M (2004) Transient complexes of redox proteins: structural and dynamic details from NMR studies. J Mol Recognit 17:524–539

    PubMed  Google Scholar 

  • Reincke B, Perez C, Pristovsek P, Lucke C, Ludwig C, Lohr F, Rogov VV, Ludwig B, Ruterjans H (2001) Solution structure and dynamics of the functional domain of Paracoccus denitrificans cytochrome c(552) in both redox states. Biochemistry 40:12312–12320

    PubMed  CAS  Google Scholar 

  • Riemer J, Fischer M, Hermann JM (2011) Oxidation-driven protein import into mitochondria: insights and blind spots. Biochim Biophys Acta 1808:981–989

    PubMed  CAS  Google Scholar 

  • Roberts VA, Pique ME (1999) Definition of the interaction domain for cytochrome c on cytochrome c oxidase. J Biol Chem 274:38051–38060

    PubMed  CAS  Google Scholar 

  • Robinson NC (1993) Functional binding of cardiolipin to cytochrome c oxidase. J Bioenerg Biomembr 25:153–163

    PubMed  CAS  Google Scholar 

  • Rödiger A, Baudisch B, Langner U, Klösgen RB (2011) Dual targeting of a mitochondrial protein: the case study of cytochrome c 1. Mol Plant 4:679–687

    PubMed  Google Scholar 

  • Rodríguez-Roldán V, García-Heredia JM, Navarro JA, De la Rosa MA, Hervás M (2008) Effect of nitration on the physicochemical and kinetic features of wild-type and mono-tyrosine mutants of human respiratory cytochrome c. Biochemistry 47:12371–12379

    PubMed  Google Scholar 

  • Rytömaa M, Mustonen P, Kinnunen PK (1992) Reversible, nonionic, and pH-dependent association of cytochrome c with cardiolipin-phosphatidylcholine liposomes. J Biol Chem 267:22243–22248

    PubMed  Google Scholar 

  • Sakamoto K, Kamiya M, Imai M, Shinzawa-Itoh K, Uchida T, Kawano K, Yoshikawa S, Ishimori K (2011) NMR basis for interprotein electron transfer gating between cytochrome c and cytochrome c oxidase. Proc Natl Acad Sci USA 108:12271–12276

    PubMed  CAS  Google Scholar 

  • Saraste M (1999) Oxidative phosphorylation at the fin de siecle. Science 283:1488–1493

    PubMed  CAS  Google Scholar 

  • Schug ZT, Gottlieb E (2009) Cardiolipin acts as a mitochondrial signaling platform to launch apoptosis. Biochim Biophys Acta 1788:2022–2031

    PubMed  CAS  Google Scholar 

  • Scorolli L, Meduri A, Morara M, Scalinci SZ, Meduri RA (2007) Effect of cytochrome c peroxidase on the corneal epithelial healing process after excimer laser photoablation in transgenic mice. Eur Surg Res 39:82–87

    PubMed  CAS  Google Scholar 

  • Shao W, Im S-C, Zuiderweg ERP, Waskell L (2003) Mapping the binding interface of the cytochrome b 5–cytochrome c complex by nuclear magnetic resonance. Biochemistry 42:14774–14784

    PubMed  CAS  Google Scholar 

  • Shidoji Y, Hayashi K, Komura S, Ohishi N, Yagi K (1999) Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation. Biochem Biophys Res Commun 264:343–347

    PubMed  CAS  Google Scholar 

  • Sinibaldi F, Fiorucci L, Patriarca A, Lauceri R, Ferri T, Coletta M, Santucci R (2008) Insights into cytochrome c-cardiolipin interaction. Role played by ionic strength. Biochemistry 47:6928–6935

    PubMed  CAS  Google Scholar 

  • Sinibaldi F, Howes BD, Piro MC, Polticelli F, Bombelli C, Ferri T, Coletta M, Smulevich G, Santucci R (2010) Extended cardiolipin anchorage to cytochrome c: a model for protein-mitochondrial membrane binding. J Biol Inorg Chem 15:689–700

    PubMed  CAS  Google Scholar 

  • Solmaz SRN, Hunte C (2008) Structure of complex III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer. J Biol Chem 283:17542–17549

    PubMed  CAS  Google Scholar 

  • Stemp EDA, Hoffman BM (1993) Cytochrome c peroxidase binds two molecules of cytochrome c: evidence for a low-affinity, electron transfer-active site on cytochrome c peroxidase. Biochemistry 32:10848–10865

    PubMed  CAS  Google Scholar 

  • Stepanov G, Gnedenko O, Mol’nar A, Ivanov A, Vladimirov Y, Osipov A (2009) Evaluation of cytochrome c affinity to anionic phospholipids by means of surface plasmon resonance. FEBS Lett 583:97–100

    PubMed  CAS  Google Scholar 

  • Sun Y-L, Wang Y-H, Yan M-M, Sun B-Y, Xie Y, Huang Z-X, Jiang S-K, Wu H-M (1999) Structure, interaction and electron transfer between cytochrome b 5, its E44A and/or E56A mutants and cytochrome c. J Mol Biol 285:347–359

    PubMed  CAS  Google Scholar 

  • Sun Y-L, Wang Y-H, Qian C, Lu J, Li E, Wang W, Lu J, Xie Y, Wang J, Zhu D, Huang Z-X, Tang W (2001) Solution structure of cytochrome b 5 mutant (E44/48/56A/D60A) and its interaction with cytochrome c. Eur J Biochem 268:1620–1630

    Google Scholar 

  • Świerczek M, Cieluch E, Sarewicz M, Borek A, Moser CC, Dutton PL, Osyczka A (2010) An electronic bus bar lies in the core of cytochrome bc 1. Science 329:451–454

    PubMed  Google Scholar 

  • Tian H, Sadoski R, Zhang L, Yu C-A, Yu L, Durham B, Millet F (2000) Definition of the interaction domain for cytochrome c on the cytochrome bc(1) complex. Steady-state and rapid kinetic analysis of electron transfer between cytochrome c and Rhodobacter sphaeroides cytochrome bc(1) surface mutants. J Biol Chem 275:9587–9595

    PubMed  CAS  Google Scholar 

  • Trinei M, Giorgio M, Cicalese A, Barozzi S, Ventura A, Migliaccio E, Milia E, Martin Padura I, Raker VA, Maccarana M, Petronilli V, Minucci S, Bernardi P, Lanfrancone L, Pelicci PG (2002) A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 21:3872–3878

    PubMed  CAS  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Ǻ. Science 272:1136–1144

    PubMed  CAS  Google Scholar 

  • Tuominen EKJ, Wallace CJA, Kinnunen PVJ (2002) Phospholipid-cytochrome c interaction: evidence for the extended lipid anchorage. J Biol Chem 277:8822–8826

    PubMed  CAS  Google Scholar 

  • Ubbink M (2009) The courtship of proteins: understanding the encounter complex. FEBS Lett 583:1060–1066

    PubMed  CAS  Google Scholar 

  • Ventura A, Maccarana M, Raker VA, Pelicci PG (2004) A cryptic targeting signal induces isoform-specific localization of p46Shc to mitochondria. J Biol Chem 279:2299–2306

    PubMed  CAS  Google Scholar 

  • Vik SB, Georgevich G, Capaldi RA (1981) Diphosphatidylglycerol is required for optimal activity of beef cytochrome c oxidase. Proc Natl Acad Sci USA 78:1456–1460

    PubMed  CAS  Google Scholar 

  • Volkov AN, Ferrari D, Worrall JAR, Bonvin AMJJ, Ubbink M (2005) The orientations of cytochrome c in the highly dynamic complex with cytochrome b 5 visualized by NMR and docking using HADDOCK. Prot Sci 14:799–811

    CAS  Google Scholar 

  • Volkov AN, Worrall JAR, Holtzmann E, Ubbink M (2006) Solution structure and dynamics of the complex between cytochrome c and cytochrome c peroxidase determined by paramagnetic NMR. Proc Natl Acad Sci USA 103:18945–18950

    PubMed  CAS  Google Scholar 

  • Volkov AN, Bashir Q, Worrall JAR, Ubbink M (2009) Binding hot spot in the weak protein complex of physiological redox partners yeast cytochrome c and cytochrome c peroxidase. J Mol Biol 385:1003–1013

    PubMed  CAS  Google Scholar 

  • Volkov AN, Bashir Q, Worrall JAR, Ullmann GM, Ubbink M (2010) Shifting the equilibrium between the encounter state and the specific form of a protein complex by interfacial point mutations. J Am Chem Soc 132:11487–11495

    PubMed  CAS  Google Scholar 

  • Volkov AN, Nicholls P, Worrall JAR (2011) The complex of cytochrome c and cytochrome c peroxidase. The end of the road? Biochim Biophys Acta. doi:10.1016/j.bbabio.2011.07.010

  • Wang K, Mei H, Geren L, Miller MA, Saunders A, Wang X, Waldner JL, Pielak GJ, Durham B, Millett F (1996a) Design of a ruthenium-cytochrome c derivative to measure electron transfer to the radical cation and oxyferryl heme in cytochrome c peroxidase. Biochemistry 35:15107–15119

    PubMed  CAS  Google Scholar 

  • Wang J, Larsen RW, Moench SJ, Satterlee JD, Rousseau DL, Ondrias MR (1996b) Cytochrome c peroxidase complexed with cytochrome c has an unperturbed heme moiety. Biochemistry 35:453–463

    PubMed  CAS  Google Scholar 

  • Witt H, Malatesta F, Nicoletti F, Brunori M, Ludwig B (1998) Tryptophan 121 of subunit II is the electron entry site to cytochrome-c oxidase in Paracoccus denitrificans. Involvement of a hydrophobic patch in the docking reaction. J Biol Chem 273:5132–5136

    PubMed  CAS  Google Scholar 

  • Worrall JAR, Kolczak U, Canters GW, Ubbink M (2001) Interaction of yeast iso-1-cytochrome c with cytochrome c peroxidase investigated by [15N, 1H] heteronuclear NMR spectroscopy. Biochemistry 40:7069–7076

    PubMed  CAS  Google Scholar 

  • Worrall JAR, Reinle W, Bernhardt R, Ubbink M (2003) Transient protein interactions studied by NMR spectroscopy: the case of cytochrome c and adrenodoxin. Biochemistry 42:7068–7076

    PubMed  CAS  Google Scholar 

  • Xu X, Reinle W, Hannemann F, Konarev PV, Svergun DI, Bernhardt R, Ubbink M (2008) Dynamics in a pure encounter complex of two proteins studied by solution scattering and paramagnetic NMR spectroscopy. J Am Chem Soc 130:6395–6403

    PubMed  CAS  Google Scholar 

  • Yonetani T, Ohnishi T (1966) Cytochrome c peroxidase, a mitochondrial enzyme of yeast. J Biol Chem 241:2983–2984

    PubMed  CAS  Google Scholar 

  • Yoshikawa S, Shinzawa-Itoh K, Nakashima R, Yaono R, Yamashita E, Inoue N, Yao M, Jie Fei M, Libeu CP, Mizushima T, Yamaguchi H, Tomizaki T, Tsukihara T (1998) Redox coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280:1723–1729

    PubMed  CAS  Google Scholar 

  • Yu C-A, Wen X, Xiao K, Xi D, Yu L (2002) Inter- and intra-molecular electron transfer in the cytochrome bc 1 complex. Biochem Biophys Acta 1555:65–70

    PubMed  CAS  Google Scholar 

  • Yu H, Lee I, Salomon AR, Yu K, Hüttemann M (2008) Mammalian liver cytochrome c is tyrosine-48 phosphorylated in vivo, inhibiting mitochondrial respiration. Biochem Biophys Acta 1777:1066–1071

    PubMed  CAS  Google Scholar 

  • Zhao X, Leon IR, Bak S, Mogensen M, Wrzesinski K, Hojlund K, Jensen ON (2011) Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes. Mol Cell Proteomics M110.000299

  • Zhou JS, Hoffmann BM (1993) Cytochrome c peroxidase simultaneously binds cytochrome c at two different sites with strikingly different reactivities: titrating a “substrate” with an enzyme. J Am Chem Soc 115:11008–11009

    CAS  Google Scholar 

  • Zhou JS, Hoffmann BM (1994) Stern-volmer in reverse: 2:1 stoichiometry of the cytochrome c–cytochrome c peroxidase electron-transfer complex. Science 265:1693–1696

    PubMed  CAS  Google Scholar 

  • Zhu Y, Li M, Wang X, Jin H, Liu S, Xu J, Chen Q (2011) Caspase cleavage of cytochrome c 1 disrupts mitochondrial function and enhances cytochrome c release. Cell Res. doi:10.1038/cr.2011.82

Download references

Acknowledgments

The authors wish to thank Jonathan Martínez-Fábregas for helpful advice and critical reading of the manuscript. This work was funded by the Spanish Ministry of Science and Innovation (BFU2009-07190) and the Andalusian Government (BIO198 and P08-CVI-3876).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irene Díaz-Moreno or Miguel A. De la Rosa.

Additional information

Special Issue: Transient interactions in biology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz-Moreno, I., García-Heredia, J.M., Díaz-Quintana, A. et al. Cytochrome c signalosome in mitochondria. Eur Biophys J 40, 1301–1315 (2011). https://doi.org/10.1007/s00249-011-0774-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-011-0774-4

Keywords

Navigation