Skip to main content

Mitochondrial Regulation of Cell Death

  • Chapter
  • First Online:
Mitochondrial Biology and Experimental Therapeutics

Abstract

Mitochondria are multifaceted organelles exerting vital as well as lethal functions within eukaryotic cells. When fueled with substrates and oxygen, mitochondria govern metabolic pathways, regulate calcium fluxes and are deeply involved in redox homeostasis. In stress conditions, notably when calcium and redox balances are altered, mitochondria sense cellular damages and ultimately, can orchestrate some phylogenetically-conserved forms of cell death such as intrinsic apoptosis, parthanatos as well as mitochondrial permeability transition-mediated necrosis. In contrast, they do not influence other cell death modalities such as necroptosis and ferroptosis. The execution of these mitochondria-dependent lethal processes involves the expression of mitochondria or nucleus-encoded proteins such as BCL-2 family members, VDAC, ANT, cytochrome c, Smac/Diablo, as well as Omi/HtrA2. In addition, mitochondria can also influence the cell fate through fusion/fission of the mitochondrial network and mitophagy to eliminate damaged mitochondria. Here, we will review and discuss basic knowledge on the role of mitochondria in the complex regulation of cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts L, De Strooper B, Morais VA (2015) PINK1 activation-turning on a promiscuous kinase. Biochem Soc Trans 43:280–286

    Article  CAS  PubMed  Google Scholar 

  • Bai L, Smith DC, Wang S (2014) Small-molecule SMAC mimetics as new cancer therapeutics. Pharmacol Ther 144:82–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  CAS  PubMed  Google Scholar 

  • Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29:2570–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belzacq-Casagrande A-S, Martel C, Pertuiset C, Borgne-Sanchez A, Jacotot E, Brenner C (2008) Pharmacological screening and enzymatic assays for apoptosis. Front Biosci 14:3550–3562

    Google Scholar 

  • Berezhnov AV, Soutar MP, Fedotova EI, Frolova MS, Plun-Favreau H, Zinchenko VP, Abramov AY (2016) Intracellular pH modulates autophagy and mitophagy. J Biol Chem 291:8701–8708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchi P, Kunduzova O, Masini E, Cambon C, Bani D, Raimondi L, Seguelas M-H, Nistri S, Colucci W, Leducq N (2005) Oxidative stress by monoamine oxidase mediates receptor-independent cardiomyocyte apoptosis by serotonin and postischemic myocardial injury. Circulation 112:3297–3305

    Article  CAS  PubMed  Google Scholar 

  • Bossy-Wetzel E, Green DR (1999) Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. J Biol Chem 274:17484–17490

    Article  CAS  PubMed  Google Scholar 

  • Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 160:1115–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner C, Kroemer G (2000) Apoptosis mitochondria-the death signal integrators. Science 289:1150–1151

    Article  CAS  PubMed  Google Scholar 

  • Burchell VS, Nelson DE, Sanchez-Martinez A, Delgado-Camprubi M, Ivatt RM, Pogson JH, Randle SJ, Wray S, Lewis PA, Houlden H, Abramov AY, Hardy J, Wood NW, Whitworth AJ, Laman H, Plun-Favreau H (2013) The Parkinson’s disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat Neurosci 16:1257–1265

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti L, Eng J, Ivanov N, Garden GA, La Spada AR (2009) Autophagy activation and enhanced mitophagy characterize the Purkinje cells of pcd mice prior to neuronal death. Mol Brain 2:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y, Lewis W, Diwan A, Cheng EH, Matkovich SJ, Dorn GW II (2010) Dual autonomous mitochondrial cell death pathways are activated by nix/BNip3L and induce cardiomyopathy. Proc Natl Acad Sci U S A 107:9035–9042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Han Z, Feng D, Chen Y, Chen L, Wu H, Huang L, Zhou C, Cai X, Fu C, Duan L, Wang X, Liu L, Liu X, Shen Y, Zhu Y, Chen Q (2014) A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol Cell 54:362–377

    Article  CAS  PubMed  Google Scholar 

  • Cipolat S, Martins De Brito O, Dal Zilio B, Scorrano L (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A 101:15927–15932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441:1162–1166

    Article  CAS  PubMed  Google Scholar 

  • Clement MV, Pervaiz S (2001) Intracellular superoxide and hydrogen peroxide concentrations: a critical balance that determines survival or death. Redox Rep 6:211–214

    Article  CAS  PubMed  Google Scholar 

  • Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  CAS  PubMed  Google Scholar 

  • Costantini P, Belzacq AS, Vieira HL, Larochette N, De Pablo MA, Zamzami N, Susin SA, Brenner C, Kroemer G (2000) Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene 19:307–314

    Article  CAS  PubMed  Google Scholar 

  • De Stefani D, Raffaello A, Teardo E, Szabò I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dechant R, Binda M, Lee SS, Pelet S, Winderickx J, Peter M (2010) Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J 29:2515–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deniaud A, Rossi C, Berquand A, Homand J, Campagna S, Knoll W, Brenner C, Chopineau J (2007) Voltage-dependent anion channel transports calcium ions through biomimetic membranes. Langmuir 23:3898–3905

    Article  CAS  PubMed  Google Scholar 

  • Di Lisa F, Canton M, Menabò R, Kaludercic N, Bernardi P (2007) Mitochondria and cardioprotection. Heart Fail Rev 12:249–260

    Article  PubMed  CAS  Google Scholar 

  • Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42

    Article  CAS  PubMed  Google Scholar 

  • Duchen M (2000a) Mitochondria and Ca2+ in cell physiology and pathophysiology. Cell Calcium 28:339–348

    Article  CAS  PubMed  Google Scholar 

  • Duchen MR (2000b) Mitochondria and calcium: from cell signalling to cell death. J Physiol 529:57–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ermak G, Sojitra S, Yin F, Cadenas E, Cuervo AM, Davies KJ (2012) Chronic expression of RCAN1-1L protein induces mitochondrial autophagy and metabolic shift from oxidative phosphorylation to glycolysis in neuronal cells. J Biol Chem 287:14088–14098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eskes R, Antonsson B, Osen-Sand A, Montessuit S, Richter C, Sadoul R, Mazzei G, Nichols A, Martinou J-C (1998) Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol 143:217–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galluzzi L, Bravo-San Pedro J, Vitale I, Aaronson S, Abrams J, Adam D, Alnemri E, Altucci L, Andrews D, Annicchiarico-Petruzzelli M (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22:58

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Kepp O, Kroemer G (2016) Mitochondrial regulation of cell death: a phylogenetically conserved control. Microbial Cell 3:101–108

    Article  PubMed  PubMed Central  Google Scholar 

  • Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13:1423–1433

    Article  CAS  PubMed  Google Scholar 

  • Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, Taanman JW (2010) Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 19:4861–4870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gincel D, Hilal Z, Shoshan-Barmatz V (2001) Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. Biochem J 358:147–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha JY, Kim JS, Kim SE, Son JH (2014) Simultaneous activation of mitophagy and autophagy by staurosporine protects against dopaminergic neuronal cell death. Neurosci Lett 561:101–106

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344:721–724

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Clarendon Press, Oxford, England

    Google Scholar 

  • Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB (2012) Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 287:19094–19104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada H, Becknell B, Wilm M, Mann M, Huang LJ-S, Taylor SS, Scott JD, Korsmeyer SJ (1999) Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase a. Mol Cell 3:413–422

    Article  CAS  PubMed  Google Scholar 

  • Hegde R, Srinivasula SM, Zhang Z, Wassell R, Mukattash R, Cilenti L, Dubois G, Lazebnik Y, Zervos AS, Fernandes-Alnemri T (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 277:432–438

    Article  CAS  PubMed  Google Scholar 

  • Hermes-Lima M, Castilho RF, Valle VG, Bechara EJ, Vercesi AE (1992) Calcium-dependent mitochondrial oxidative damage promoted by 5-aminolevulinic acid. Biochim Biophys Acta 1180:201–206

    Article  CAS  PubMed  Google Scholar 

  • Ichas F, Jouaville LS, Mazat J-P (1997) Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89:1145–1153

    Article  CAS  PubMed  Google Scholar 

  • Juhaszova M, Zorov DB, Kim S-H, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL (2004) Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Investig 113:1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaludercic N, Carpi A, Menabò R, Di Lisa F, Paolocci N (2011) Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta 1813:1323–1332

    Article  CAS  PubMed  Google Scholar 

  • Kanno T, Sato EF, Muranaka S, Fujita H, Fujiwara T, Utsumi T, Inoue M, Utsumi K (2004) Oxidative stress underlies the mechanism for Ca2+-induced permeability transition of mitochondria. Free Radic Res 38:27–35

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon EA, Trempe JF, Saeki Y, Tanaka K, Matsuda N (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510:162–166

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  PubMed  Google Scholar 

  • Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR, Newmeyer DD (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342

    Article  CAS  PubMed  Google Scholar 

  • Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Bras M, Clement MV, Pervaiz S, Brenner C (2005) Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol 20:205–220

    PubMed  Google Scholar 

  • Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52:159–164

    Article  CAS  PubMed  Google Scholar 

  • Lewis CA, Parker SJ, Fiske BP, Mccloskey D, Gui DY, Green CR, Vokes NI, Feist AM, Vander Heiden MG, Metallo CM (2014) Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell 55:253–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W, Huang L, Xue P, Li B, Wang X, Jin H, Wang J, Yang F, Liu P, Zhu Y, Sui S, Chen Q (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14:177–185

    Article  PubMed  CAS  Google Scholar 

  • Liu YQ, Ji Y, Li XZ, Tian KL, Young CY, Lou HX, Yuan HQ (2013) Retigeric acid B-induced mitophagy by oxidative stress attenuates cell death against prostate cancer cells in vitro. Acta Pharmacol Sin 34:1183–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Sakakibara K, Chen Q, Okamoto K (2014) Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res 24:787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490

    Article  CAS  PubMed  Google Scholar 

  • Madesh M, Hajnoczky G (2001) VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 155:1003–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martel C, Allouche M, Esposti D, Fanelli E, Boursier C, Henry C, Chopineau J, Calamita G, Kroemer G, Lemoine A (2012) GSK3-mediated VDAC phosphorylation controls outer mitochondrial membrane permeability during lipid accumulation. Hepatology 57:93–102

    Article  CAS  Google Scholar 

  • Martinou JC, Green DR (2001) Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2:63–67

    Article  CAS  PubMed  Google Scholar 

  • Martins LM, Iaccarino I, Tenev T, Gschmeissner S, Totty NF, Lemoine NR, Savopoulos J, Gray CW, Creasy CL, Dingwall C (2002) The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 277:439–444

    Article  CAS  PubMed  Google Scholar 

  • Martins I, Raza SQ, Voisin L, Dakhli H, Law F, Allouch A, Thoreau M, Brenner C, Deutsch E, Perfettini J-L (2017) Entosis: the emerging face of non-cell-autonomous type IV programmed death. Biomed J 40(3):133–140

    Article  PubMed  Google Scholar 

  • Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HL, Prevost MC, Xie Z, Matsuyama S, Reed JC, Kroemer G (1998) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281:2027–2031

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Chan SL (2003) Calcium orchestrates apoptosis. Nat Cell Biol 5:1041–1043

    Article  CAS  PubMed  Google Scholar 

  • Morais VA, Verstreken P, Roethig A, Smet J, Snellinx A, Vanbrabant M, Haddad D, Frezza C, Mandemakers W, Vogt-Weisenhorn D, Van Coster R, Wurst W, Scorrano L, De Strooper B (2009) Parkinson’s disease mutations in PINK1 result in decreased complex I activity and deficient synaptic function. EMBO Mol Med 1:99–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy MP, Holmgren A, Larsson N-G, Halliwell B, Chang CJ, Kalyanaraman B, Rhee SG, Thornalley PJ, Partridge L, Gems D (2011) Unraveling the biological roles of reactive oxygen species. Cell Metab 13:361–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neupert W (1997) Protein import into mitochondria. Annu Rev Biochem 66:863–917

    Article  CAS  PubMed  Google Scholar 

  • Novak I, Kirkin V, Mcewan DG, Zhang J, Wild P, Rozenknop A, Rogov V, Lohr F, Popovic D, Occhipinti A, Reichert AS, Terzic J, Dotsch V, Ney PA, Dikic I (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11:45–51

    Article  CAS  PubMed  Google Scholar 

  • Orrenius S, Zhivotovsky B (2005) Cardiolipin oxidation sets cytochrome c free. Nat Chem Biol 1:188–189

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Liu J, Nguyen T, Liu C, Sun J, Teng Y, Fergusson MM, Rovira II, Allen M, Springer DA (2013) The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 15:1464–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson S, Spahr C, Daugas E, Susin S, Irinopoulou T, Koehler C, Kroemer G (2000) Mass spectrometric identification of proteins released from mitochondria undergoing permeability transition. Cell Death Differ 7:137

    Article  CAS  PubMed  Google Scholar 

  • Pchejetski D, Kunduzova O, Dayon A, Calise D, Seguelas M-H, Leducq N, Seif I, Parini A, Cuvillier O (2007) Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A-associated cardiac cell apoptosis. Circ Res 100:41–49

    Article  CAS  PubMed  Google Scholar 

  • Petit PX, Goubern M, Diolez P, Susin SA, Zamzami N, Kroemer G (1998) Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: the impact of irreversible permeability transition. FEBS Lett 426:111–116

    Article  CAS  PubMed  Google Scholar 

  • Pozzan T, Rizzuto R, Volpe P, Meldolesi J (1994) Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74:595–637

    Article  CAS  PubMed  Google Scholar 

  • Reed JC (2000) Mechanisms of apoptosis. Am J Pathol 157:1415–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rikka S, Quinsay MN, Thomas RL, Kubli DA, Zhang X, Murphy AN, Gustafsson AB (2011) Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ 18:721–731

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Enriquez S, He L, Lemasters JJ (2004) Role of mitochondrial permeability transition pores in mitochondrial autophagy. Int J Biochem Cell Biol 36:2463–2472

    Article  CAS  PubMed  Google Scholar 

  • Schwarten M, Mohrlüder J, Ma P, Stoldt M, Thielmann Y, Stangler T, Hersch N, Hoffmann B, Merkel R, Willbold D (2014) Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy 5:690–698

    Article  Google Scholar 

  • Shi RY, Zhu SH, Li V, Gibson SB, Xu XS, Kong JM (2014) BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke. CNS Neurosci Ther 20:1045–1055

    Article  CAS  PubMed  Google Scholar 

  • Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, Youle RJ (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191:1367–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomasello F, Messina A, Lartigue L, Schembri L, Medina C, Reina S, Thoraval D, Crouzet M, Ichas F, De Pinto V (2009) Outer membrane VDAC1 controls permeability transition of the inner mitochondrial membrane in cellulo during stress-induced apoptosis. Cell Res 19:1363

    Article  CAS  PubMed  Google Scholar 

  • Tsujimoto Y, Cossman J, Jaffe E, Croce CM (1985) Involvement of the bcl-2 gene in human follicular lymphoma. Science 228:1440–1444

    Article  CAS  PubMed  Google Scholar 

  • Van Loo G, Van Gurp M, Depuydt B, Srinivasula SM, Rodriguez I, Alnemri ES, Gevaert K, Vandekerckhove J, Declercq W, Vandenabeele P (2002) The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 9:20–26

    Article  PubMed  Google Scholar 

  • Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM (2012) p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149:1536–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira H, Belzacq A-S, Haouzi D, Bernassola F, Cohen I, Jacotot E, Ferri KF, El Hamel C, Bartle LM, Melino G (2001) The adenine nucleotide translocator: a target of nitric oxide, peroxynitrite, and 4-hydroxynonenal. Oncogene 20:4305–4316

    Article  CAS  PubMed  Google Scholar 

  • Wang S, He M, Li L, Liang Z, Zou Z, Tao A (2016) Cell-in-cell death is not restricted by caspase-3 deficiency in MCF-7 cells. J Breast Cancer 19:231–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Figueiredo-Pereira C, Oudot C, Vieira H, Brenner C (2017) Mitochondrion: a common organelle for distinct cell deaths? Int Rev Cell Mol Biol 331:245–287

    Article  CAS  PubMed  Google Scholar 

  • Wei MC, Zong W-X, Cheng EH-Y, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, Macgregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13:805–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Tian W, Hu Z, Chen G, Huang L, Li W, Zhang X, Xue P, Zhou C, Liu L, Zhu Y, Zhang X, Li L, Zhang L, Sui S, Zhao B, Feng D (2014) ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep 15:566–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia M, Meng G, Jiang A, Chen A, Dahlhaus M, Gonzalez P, Beltinger C, Wei J (2014) Mitophagy switches cell death from apoptosis to necrosis in NSCLC cells treated with oncolytic measles virus. Oncotarget 5:3907

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y, Wang JW, Yang L, Beal MF, Vogel H, Lu B (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A 103:10793–10798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon Y, Krueger EW, Oswald BJ, Mcniven MA (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23:5409–5420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamzami N, Kroemer G (2001) The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 2:67–71

    Article  CAS  PubMed  Google Scholar 

  • Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssière J-L, Petit PX, Kroemer G (1995) Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 181:1661–1672

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Massen S, Terenzio M, Lang V, Chen-Lindner S, Eils R, Novak I, Dikic I, Hamacher-Brady A, Brady NR (2013) Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J Biol Chem 288:1099–1113

    Article  CAS  PubMed  Google Scholar 

  • Zorov DB, Filburn CR, Klotz L-O, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS-induced) ROS release. J Exp Med 192:1001–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

C.B. is funded by ANR (ANR-13-ISV1-0001-01) and the Investment for the Future program ANR-11-IDEX-0003-01 within the LABEX ANR-10-LABX-0033. D.L. is funded by scholarship from Chine Scientific Council (CSC). This work was supported by funds from Agence Nationale de la Recherche (ANR-10-IBHU-0001, ANR-10-LABX33 and ANR-11-IDEX-003-01), Electricité de France, Fondation Gustave Roussy, Institut National du Cancer (INCA 9414), Cancéropôle Ile de France, NATIXIS, SIDACTION and the French National Agency for Research on AIDS and viral Hepatitis (ANRSH) (to J-L.P.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, D., Perfettini, JL., Brenner, C. (2018). Mitochondrial Regulation of Cell Death. In: Oliveira, P. (eds) Mitochondrial Biology and Experimental Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-319-73344-9_6

Download citation

Publish with us

Policies and ethics