Skip to main content
Log in

Effect of lithium on the electrical properties of polycystin-2 (TRPP2)

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Polycystin-2 (PC2, TRPP2) is a TRP-type, non-selective cation channel whose dysfunction is implicated in changes in primary cilium structure and genesis of autosomal dominant polycystic kidney disease (ADPKD). Lithium (Li+) is a potent pharmaceutical agent whose effect on cell function is largely unknown. In this work, we explored the effect of Li+ on PC2 channel function. In vitro translated PC2 was studied in a lipid bilayer reconstitution system exposed to different chemical conditions such as Li+ or K+ chemical gradients and different symmetrical concentrations of either cation. Li+ inhibited PC2 function only from the external side, by decreasing the single-channel conductance and modifying the reversal potential consistent with both permeability to and blockage of the channel. When a chemical gradient was imposed, the PC2 single-channel conductance was 144 pS and 107 pS for either K+ or Li+, respectively. Data were analysed in terms of the Goldman–Hodgkin–Katz approximation and energy models based on absolute rate theory to understand the mechanism(s) of Li+ transport and blockage of PC2. The 2S3B model better explained the findings, including saturation, anomalous mole fraction, non-linearity of the current–voltage curves under bi-ionic conditions and concentration dependence of permeability ratios. The data indicate that Li+ modifies PC2 channel function, whose effect unmasks a high-affinity binding site for this ion, and an intrinsic asymmetry in the pore structure of the channel. The findings provide insights into possible mechanism(s) of Li+ regulation of ciliary length and dysfunction mediated by this cation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

2S3B:

Two-site three-barrier model

3S4B:

Three-site four-barrier model

ADPKD:

Autosomal dominant polycystic kidney disease

ENaC:

Epithelial sodium channel

GHK:

Goldman–Hodgkin–Katz

GHKm :

Modified Goldman–Hodgkin–Katz

GHKo :

Original Goldman–Hodgkin–Katz

Hepes:

4-(2-Hydroxyethyl)-1-piperazineethanesulphonic acid

hST:

Human syncytiotrophoblast

PC2:

Polycystin-2 (TRPP2)

Perm-selectivity:

Permeation selectivity

POPC:

Phosphatidyl-choline

POPE:

Phosphatidyl-ethanolamine

TM:

Transmembrane

TRP:

Transient receptor potential

TRPC1:

TRP canonical type-1

I/V:

Current–voltage relationship

V rev :

Reversal potential

References

  • Almers W, McCleskey EW (1984) Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore. J Physiol 353:585–608

    PubMed  CAS  Google Scholar 

  • Alvarez O, Villarroel A, Eisenman G (1992) Calculation of ion currents from energy profiles and energy profiles from ion currents in multibarrier, multisite, multioccupancy channel model. Methods Enzymol 207:816–854

    Article  PubMed  CAS  Google Scholar 

  • Bai CX, Giamarchi A, Rodat-Despoix L, Padilla F, Downs T, Tsiokas L, Delmas P (2008) Formation of a new receptor-operated channel by heteromeric assembly of TRPP2 and TRPC1 subunits. EMBO Rep 9:472–479

    Article  PubMed  CAS  Google Scholar 

  • Cantiello HF (2003) A tale of two tails: ciliary mechanotransduction in ADPKD. Trends Mol Med 9(6):234–236

    Article  PubMed  CAS  Google Scholar 

  • Cukierman S, Yellen G, Miller M (1985) The K+ channel of sarcoplasmic reticulum. A new look at Cs+ block. Biophys J 48:477–484

    Article  PubMed  CAS  Google Scholar 

  • Dang TX, McCleskey EW (1998) Ion channel selectivity through stepwise changes in binding affinity. J Gen Physiol 111:185–1923

    Article  PubMed  CAS  Google Scholar 

  • Delmas P (2005) Polycystins: polymodal receptor/ion-channel cellular sensors. Pflügers Arch 451(1):264–276

    Article  PubMed  CAS  Google Scholar 

  • Eyring H, Lumry R, Woodbury JW (1949) Some applications of modern rate theory to physiological systems. Rec Chem Prog 10:100–114

    CAS  Google Scholar 

  • French RJ, Worley JF III, Wonderlin WF, Kularatna AS, Krueger BK (1994) Ion permeation, divalent ion block, and chemical modification of single sodium channels. Description by single- and double-occupancy rate-theory models. J Gen Physiol 103(3):447–470

    Article  PubMed  CAS  Google Scholar 

  • Glasstone S, Laidler KJ, Eyring H (1941) The theory of rate processes. McGraw-Hill, New York

    Google Scholar 

  • González-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, Harris PC, Reisin IL, Arnaout MA, Cantiello HF (2001) Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci USA 98(3):1182–1187

    Article  PubMed  Google Scholar 

  • González-Perrett S, Batelli M, Kim K, Essafi M, Timpanaro G, Montalbetti N, Reisin IL M, Arnaout A, Cantiello HF (2002) Voltage dependence and pH regulation of human polycystin-2 mediated cation channel activity. J Biol Chem 277:24959–24966

    Article  PubMed  Google Scholar 

  • Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1975) Ionic selectivity, saturation, and block in sodium channels. A four-barrier model. J Gen Physiol 66(5):535–560

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1992) Ionic channels of excitable membranes, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  • Hille B, Schwarz W (1978) Potassium channels as multi-ion single-file pores. J Gen Physiol 72(4):409–442

    Article  PubMed  CAS  Google Scholar 

  • Hladky SB, Haydon DA (1972) Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel. Biochim Biophys Acta 274(2):294–312

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL, Keynes RD (1955) The potassium permeability of a giant axon nerve fiber. J Physiol 128:61–88

    PubMed  CAS  Google Scholar 

  • Ismailov II, Shlyonsky VG, Alvarez O, Benos DJ (1997) Cation permeability of a cloned rat epithelial amiloride-sensitive Na+ channel. J Physiol 504(Pt 2):287–300

    Article  PubMed  CAS  Google Scholar 

  • Keener J, Sneyd J (1992) Mathematical physiology, 2nd edn. Springer, Sunderland

    Google Scholar 

  • Läuger P (1973) Ion transport through pores: a rate-theory analysis. Biochim Biophys Acta 311(3):423–441

    Article  PubMed  Google Scholar 

  • Li Q, Montalbetti N, Wu Y, Ramos A, Raychowdhury MK, Chen XZ, Cantiello HF (2006) Polycystin-2 cation channel function is under the control of microtubular structures in primary cilia of renal epithelial cells. J Biol Chem 281(49):37566–37575

    Article  PubMed  CAS  Google Scholar 

  • Lide DR (2009–2010) Handbook of chemistry and physics. CRC. 90th edn, pp 5–81 to 5–85

  • Luo Y, Vassilev PM, Li X, Kawanabe Y, Zhou J (2003) Native polycystin 2 functions as a plasma membrane Ca2+-permeable cation channel in renal epithelia. Mol Cell Biol 23(7):2600–2607

    Article  PubMed  CAS  Google Scholar 

  • Machado-Vieira R, Manji HK, Zarate CA Jr (2009) The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disord 11(Suppl 2):92–109

    Article  PubMed  CAS  Google Scholar 

  • Mackey M, McNeel M (1971) The independence principle: a reconsideration. Biophys J 11:675–680

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi K, Kasahara K, Miyazaki I, Asanuma M (2009) Lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Biochem Biophys Res Commun 388(4):757–762

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342

    Article  PubMed  CAS  Google Scholar 

  • Montell C (2001) Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Sci STKE 90:RE1

    Google Scholar 

  • Nauli SM, Zhou J (2004) Polycystins and mechanosensation in renal and nodal cilia. Bioessays 26(8):844–856

    Article  PubMed  CAS  Google Scholar 

  • Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33(2):129–137

    Article  PubMed  CAS  Google Scholar 

  • Nonner W, Chen D, Eisenberg B (1999) Progress and prospects in permeation. J Gen Physiol 113:773–782

    Article  PubMed  CAS  Google Scholar 

  • Raychowdhury MK, McLaughlin M, Ramos AJ, Montalbetti N, Bouley R, Ausiello DA, Cantiello HF (2005) Characterization of single channel currents from primary cilia of renal epithelial cells. J Biol Chem 280(41):34718–34722

    Article  PubMed  CAS  Google Scholar 

  • Schultz SG (1980) Basic principles of membrane transport, 1st edn. Cambridge University Press, New York

    Google Scholar 

  • Schumaker MF, MacKinnon R (1990) A simple model for multi-ion permeation. Single-vacancy conduction in a simple pore model. Biophys J 58(4):975–984

    Article  PubMed  CAS  Google Scholar 

  • Segel IH (1975) Enzyme kinetics. Behavior and analysis of rapid equilibrium and steady state enzyme systems, Chap. 7. Wiley-Interscience, New York, pp 391–395

    Google Scholar 

  • Timmer RT, Sands JM (1999) Lithium intoxication. J Am Soc Nephrol 10:666–674

    PubMed  CAS  Google Scholar 

  • Urban BW, Hladky SB (1979) Ion transport in the simplest single file pore. Biochim Biophys Acta 554:410–429

    Article  PubMed  CAS  Google Scholar 

  • Urban BW, Hladky SB, Haydon DA (1978) The kinetics of ion movements in the gramicidin channel. Fed Proc 37:2628–2632

    PubMed  CAS  Google Scholar 

  • Vassilev PM, Guo L, Chen XZ, Segal Y, Peng JB, Basora N, Babakhanlou H, Cruger G, Kanazirska M, Ye CP, Brown EM, Hediger MA, Zhou J (2001) Polycystin-2 is a novel cation channel implicated in defective intracellular Ca2+ homeostasis in polycystic kidney disease. Biochem Biophys Res Commun 282(1):341–350

    Article  PubMed  CAS  Google Scholar 

  • Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417. Review

    Google Scholar 

  • Voets T, Nilius B (2003) TRP makes sense. J Membr Biol 192(1): 1–8. Review

    Google Scholar 

  • Xu GM, González-Perrett S, Essafi M, Timpanaro GA, Montalbetti N, Arnaout MA, Cantiello HF (2003) Polycystin-1 activates and stabilizes the polycystin-2 channel. J Biol Chem 278(3):1457–1462

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Luo Y, Chasan B, González-Perrett S, Montalbetti N, Timpanaro GA, Cantero MR, Ramos AJ, Goldmann WH, Zhou J, Cantiello HF (2009) The multimeric structure of polycystin-2 (TRPP2): structural-functional correlates of homo- and hetero-multimers with TRPC1. Hum Mol Genet 18(7):1238–1251

    Article  PubMed  CAS  Google Scholar 

  • Zwolinski B, Eyring H, Reese C (1949) Diffusion and membrane permeability. Colloid Chem 53:1426–1453

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are members of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. The authors are deeply grateful to Dr. Patricia Bonazzola, for constant and unconditional support and encouragement, and Sumit Lal, for excellent technical support. The authors gratefully acknowledge partial support of this study by NIH ARRA award DK077079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio F. Cantiello.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 321 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantero, M.R., Cantiello, H.F. Effect of lithium on the electrical properties of polycystin-2 (TRPP2). Eur Biophys J 40, 1029–1042 (2011). https://doi.org/10.1007/s00249-011-0715-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-011-0715-2

Keywords

Navigation