Skip to main content
Log in

Redox regulation of morphology, cell stiffness, and lectin-induced aggregation of human platelets

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Redox regulation and carbohydrate recognition are potent molecular mechanisms which can contribute to platelet aggregation in response to various stimuli. The purpose of this study is to investigate the relationship between these mechanisms and to examine whether cell surface glycocalyx and cell stiffness of human platelets are sensitive to the redox potential formed by glutathione. To this end, human platelets were treated with different concentrations (0.05 μM to 6 mM) and ratios of reduced or oxidized glutathione (GSH or GSSG), and platelet morphological, mechanical, and functional properties were determined using conventional light microscopy, atomic force microscopy, and lectin-induced cell aggregation analysis. It was found that lowering the glutathione redox potential changed platelet morphology and increased platelet stiffness as well as modulated nonuniformly platelet aggregation in response to plant lectins with different carbohydrate-binding specificity including wheat germ agglutinin, Sambucus nigra agglutinin, and Canavalia ensiformis agglutinin. Extracellular redox potential and redox buffering capacity of the GSSG/2GSH couple were shown to control the availability of specific lectin-binding glycoligands on the cell surface, while the intracellular glutathione redox state affected the general functional ability of platelets to be aggregated independently of the type of lectins. Our data provide the first experimental evidence that glutathione as a redox molecule can affect the mechanical stiffness of human platelets and induce changes of the cell surface glycocalyx, which may represent a new mechanism of redox regulation of intercellular contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

α-MM:

α-Methyl-d-mannoside

Con A:

Canavalia ensiformis agglutinin

DEM:

Diethyl maleate

GlcNAc:

N-acetyl-d-glucosamine

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

HSR:

Haptenic-sugar-resistant

mBCl:

Monochlorobimane

NEM:

N-ethylmaleimide

PRP:

Platelet-rich plasma

SNA:

Sambucus nigra agglutinin

WGA:

Wheat germ agglutinin

AFM:

Atomic force microscopy

References

  • Agrawal NJ, Radhakrishnan R (2007) The role of glycocalyx in nanocarrier-cell adhesion investigated using a thermodynamic model and Monte Carlo simulations. J Phys Chem C Nanomater Interfaces 111:15848–15856

    CAS  PubMed  Google Scholar 

  • Andre P, Capo C, Benoliel AM, Bongrand P, Rouge F, Aubert C (1990) Splitting cell adhesiveness into independent measurable parameters by comparing ten human melanoma cell lines. Cell Biophys 17:163–180

    CAS  PubMed  Google Scholar 

  • Ball C, Vijayan KV, Nguyen T, Anthony K, Bray PF, Essex DW, Dong JF (2008) Glutathione regulates integrin αIIbβ3-mediated cell adhesion under flow conditions. Thromb Haemost 100:857–863

    CAS  PubMed  Google Scholar 

  • Beppu M, Yokoyama N, Motohashi M, Kikugawa K (2001) Enhanced adhesion of oxidized mouse polymorphonuclear leukocytes to macrophages by a cell-surface sugar-dependent mechanism. Biol Pharm Bull 24:19–26

    Article  CAS  PubMed  Google Scholar 

  • Bhadriraju K, Hansen LK (2002) Extracellular matrix- and cytoskeleton-dependent changes in cell shape and stiffness. Exp Cell Res 278:92–100

    Article  CAS  PubMed  Google Scholar 

  • Boyland E, Chasseaud LF (1967) Enzyme-catalysed conjugations of glutathione with unsaturated compounds. Biochem J 104:95–102

    CAS  PubMed  Google Scholar 

  • Burch PT, Burch JW (1987) Alterations in glutathione during storage of human platelet concentrates. Transfusion 27:342–346

    Article  CAS  PubMed  Google Scholar 

  • Callies C, Schon P, Liashkovich I, Stock C, Kusche-Vihrog K, Fels J, Strater AS, Oberleithner H (2009) Simultaneous mechanical stiffness and electrical potential measurements of living vascular endothelial cells using combined atomic force and epifluorescence microscopy. Nanotechnology 20:175104 (8 p)

    Google Scholar 

  • Chizhik SA, Huang Z, Gorbunov VV, Myshkin NK, Tsukruk VV (1998) Micromechanical properties of elastic polymeric materials as probed by scanning force microscopy. Langmuir 14:2606–2609

    Article  CAS  Google Scholar 

  • Dalle-Donne I, Rossi R, Milzani A, Di Simplicio P, Colombo R (2001) The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radic Biol Med 31:1624–1632

    Article  CAS  PubMed  Google Scholar 

  • Dalle-Donne I, Giustarini D, Rossi R, Colombo R, Milzani A (2003) Reversible S-glutathionylation of Cys 374 regulates actin filament formation by inducing structural changes in the actin molecule. Free Radic Biol Med 34:23–32

    Article  CAS  PubMed  Google Scholar 

  • DeMarco ML, Woods RJ (2008) Structural glycobiology: a game of snakes and ladders. Glycobiology 18:426–440

    Article  CAS  PubMed  Google Scholar 

  • Drozd ES, Chizhik SA (2008) Combined atomic force microscopy and optical microscopy measurements as a method of erythrocyte investigation. Proc SPIE 7377:73770E. doi:10.1117/12.836481

  • Essex DW (2009) Redox control of platelet function. Antioxid Redox Signal 11:1191–1225

    Article  CAS  PubMed  Google Scholar 

  • Essex DW, Li M (2003) Redox control of platelet aggregation. Biochemistry 42:129–136

    Article  CAS  PubMed  Google Scholar 

  • Fritz M, Radmacher M, Gaub HE (1994) Granula motion and membrane spreading during activation of human platelets imaged by atomic force microscopy. Biophys J 66:1328–1334

    Article  CAS  PubMed  Google Scholar 

  • Ghezzi P (2005) Regulation of protein function by glutathionylation. Free Radic Res 39:573–580

    Article  CAS  PubMed  Google Scholar 

  • Gorudko IV, Buko IV, Cherenkevich SN, Polonetsky LZ, Timoshenko AV (2008) Lectin-induced aggregates of blood cells from patients with acute coronary syndromes. Arch Med Res 39:674–681

    Article  CAS  PubMed  Google Scholar 

  • Hansen RE, Winther JR (2009) An introduction to methods for analyzing thiols and disulfides: reactions, reagents, and practical considerations. Anal Biochem 394:147–158

    Article  CAS  PubMed  Google Scholar 

  • Hartwig JH (2006) The platelet: form and function. Semin Hematol 43:94–100

    Article  Google Scholar 

  • Heinemann SH, Hoshi T (2006) Multifunctional potassium channels: electrical switches and redox enzymes, all in one. Sci STKE 2006:pe33. doi:10.1126/stke.3502006pe33

    Article  PubMed  Google Scholar 

  • Higashihara M, Takahata K, Ohashi T, Kariya T, Kume S, Oka H (1985) The platelet activation induced by wheat germ agglutinin. FEBS Lett 183:433–438

    Article  CAS  PubMed  Google Scholar 

  • Hill TD, White JG, Rao GH (1989) The influence of glutathione depleting agents on human platelet function. Thromb Res 53:457–465

    Article  CAS  PubMed  Google Scholar 

  • Hwang C, Sinskey AJ, Lodish HF (1992) Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257:1496–1502

    Article  CAS  PubMed  Google Scholar 

  • Jonas CR, Ziegler TR, Gu LH, Jones DP (2002) Extracellular thiol/disulfide redox state affects proliferation rate in a human colon carcinoma (Caco2) cell line. Free Radic Biol Med 33:1499–1506

    Article  CAS  PubMed  Google Scholar 

  • Kasas S, Wang X, Hirling H, Marsault R, Huni B, Yersin A, Regazzi R, Grenningloh G, Riederer B, Forro L, Dietler G, Catsicas S (2005) Superficial and deep changes of cellular mechanical properties following cytoskeleton disassembly. Cell Motil Cytoskeleton 62:124–132

    Article  CAS  PubMed  Google Scholar 

  • Kim SR, Lee JY, Lee MY, Chung SM, Bae ON, Chung JH (2001) Association of quinone-induced platelet anti-aggregation with cytotoxicity. Toxicol Sci 62:176–182

    Article  CAS  PubMed  Google Scholar 

  • Kirlin WG, Cai J, Thompson SA, Diaz D, Kavanagh TJ, Jones DP (1999) Glutathione redox potential in response to differentiation and enzyme inducers. Free Radic Biol Med 27:1208–1218

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Sharma S, Pundir CS, Sharma A (1995) Decreased plasma glutathione in cancer of the uterine cervix. Cancer Lett 94:107–111

    Article  CAS  PubMed  Google Scholar 

  • Lydataki S, Lesniewska E, Tsilimbaris MK, Le Grimellec C, Rochette L, Goudonnet JP, Pallikaris IG (2003) Observation of the posterior endothelial surface of the rabbit cornea using atomic force microscopy. Cornea 22:651–664

    Article  CAS  PubMed  Google Scholar 

  • Mathur AB, Collinsworth AM, Reichert WM, Kraus WE, Truskey GA (2001) Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J Biomech 34:1545–1553

    Article  CAS  PubMed  Google Scholar 

  • Matsuda S, Ikeda Y, Aoki M, Toyama K, Watanabe K, Ando Y (1979) Role of reduced glutathione on platelet functions. Thromb Haemost 42:1324–1331

    CAS  PubMed  Google Scholar 

  • Moriarty-Craige SE, Jones DP (2004) Extracellular thiols and thiol/disulfide redox in metabolism. Annu Rev Nutr 24:481–509

    Article  CAS  PubMed  Google Scholar 

  • Nakashima I, Pu MY, Nishizaki A, Rosila I, Ma L, Katano Y, Ohkusu K, Rahman SM, Isobe K, Hamaguchi M (1994) Redox mechanism as alternative to ligand binding for receptor activation delivering disregulated cellular signals. J Immunol 152:1064–1071

    CAS  PubMed  Google Scholar 

  • Oberleithner H, Callies C, Kusche-Vihrog K, Schillers H, Shahin V, Riethmüller C, MacGregor GA, Wardener HE (2009) Potassium softens vascular endothelium and increases nitric oxide release. PNAS 106:2829–2834

    Article  CAS  PubMed  Google Scholar 

  • Pacchiarini L, Tua A, Grignani G (1996) In vitro effect of reduced glutathione on platelet function. Haematologica 81:497–502

    CAS  PubMed  Google Scholar 

  • Palumaa P (2009) Biological redox switches. Antioxid Redox Signal 11:981–983

    Article  CAS  PubMed  Google Scholar 

  • Pastore A, Federici G, Bertini E, Piemonte F (2003) Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta 333:19–39

    Article  CAS  PubMed  Google Scholar 

  • Pidard D, Didry D, Kunicki TJ, Nurden AT (1986) Temperature-dependent effects of EDTA on the membrane glycoprotein IIb- IIIa complex and platelet aggregability. Blood 67:604–611

    CAS  PubMed  Google Scholar 

  • Radmacher M, Fritz M, Kacher CM, Cleveland JP, Hansma PK (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J 70:556–567

    Article  CAS  PubMed  Google Scholar 

  • Rosado JA, Jenner S, Sage SO (2000) A role for the actin cytoskeleton in the initiation and maintenance of store-mediated calcium entry in human platelets. Evidence for conformational coupling. J Biol Chem 275:7527–7533

    Article  CAS  PubMed  Google Scholar 

  • Rosado JA, López JJ, Harper AJS, Harper MT, Redondo PS, Pariente JA, Sage SO, Salido GM (2004) Two pathways for store-mediated calcium entry differentially dependent on the actin cytoskeleton in human platelets. J Biol Chem 279:29231–29235

    Article  CAS  PubMed  Google Scholar 

  • Ruggeri ZM (2002) Platelets in atherothrombosis. Nat Med 8:1227–1234

    Article  CAS  PubMed  Google Scholar 

  • Samal AB, Timoshenko AV, Loiko EN, Kaltner H, Gabius HJ (1998) Formation of lactose-resistant aggregates of human platelets induced by the mistletoe lectin and differential signaling responses to cell contact formation by the lectin or thrombin. Biochemistry (Mosc) 63:516–522

    CAS  Google Scholar 

  • Samiec PS, Drews-Botsch C, Flagg EW, Kurtz JC, Sternberg P Jr, Reed RL, Jones DP (1998) Glutathione in human plasma: decline in association with aging, age-related macular degeneration, and diabetes. Free Radic Biol Med 24:699–704

    Article  CAS  PubMed  Google Scholar 

  • Sharon N, Lis H (2003) Lectins, 2nd edn. Kulwer Academic, Dordrecht, p 454

    Google Scholar 

  • Shimizu H, Kiyohara Y, Kato I, Kitazono T, Tanizaki Y, Kubo M, Ueno H, Ibayashi S, Fujishima M, Iida M (2004) Relationship between plasma glutathione levels and cardiovascular disease in a defined population. Stroke 35:2072–2077

    Article  CAS  PubMed  Google Scholar 

  • Timoshenko AV, Zorin VP, Cherenkevich SN (1986) Effect of prostaglandins and inhibitors of arachidonic acid methabolism on concanavalin A-induced agglutination of thymocytes. Abstracts of the All-Union Symposium on Synthesis and Study of Prostaglandins at Tallinn, USSR, November 1986, 169

  • Timoshenko AV, Loiko EN, Cherenkevich SN, Gabius HJ (1996) Effects of metabolic inhibitors and lectins on the menadione-dependent generation of H2O2 by rat thymocytes. Biochem Mol Biol Int 40:1149–1158

    CAS  PubMed  Google Scholar 

  • Timoshenko AV, Gorudko IV, Cherenkevich SN, Gabius HJ (1999) Differential potency of two crosslinking plant lectins to induce formation of haptenic-sugar-resistant aggregates of rat thymocytes by post-binding signaling. FEBS Lett 449:75–78

    Article  CAS  PubMed  Google Scholar 

  • Torti M, Festetics ET, Bertoni A, Sinigaglia F, Balduini C (1999) Clustering of integrin αIIb-β3 differently regulates tyrosine phosphorylation of pp72syk, PLCgamma2 and pp125FAK in concanavalin A-stimulated platelets. Thromb Haemost 81:124–1304

    CAS  PubMed  Google Scholar 

  • Walch M, Ziegler U, Groscurth P (2000) Effect of streptolysin O on the microelasticity of human platelets analyzed by atomic force microscopy. Ultramicroscopy 82:259–267

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Joseph JA (2000) Mechanisms of hydrogen peroxide-induced calcium dysregulation in PC12 cells. Free Radic Biol Med 28:1222–1231

    Article  CAS  PubMed  Google Scholar 

  • Wu HW, Kuhn T, Moy VT (1998) Mechanical properties of L929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking. Scanning 20:389–397

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Garg SK, Kipnis J, Banerjee R (2009) Extracellular redox modulation by regulatory T cells. Nat Chem Biol 5:721–723

    Article  CAS  PubMed  Google Scholar 

  • Yang YT, Lin CC, Liao JD, Chang CW, Ju MS (2010) Continuous depth-sensing nano-mechanical characterization of living, fixed and dehydrated cells attached on a glass substrate. Nanotechnology 21:285704

    Article  PubMed  Google Scholar 

  • Yatomi Y, Ozaki Y, Koike Y, Satoh K, Kume S (1993) Wheat germ agglutinin-induced intracellular calcium mobilization in human platelets: suppression by staurosporine and resistance to cyclic AMP inhibition. Biochem Biophys Res Commun 15:453–458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina V. Shamova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 278 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamova, E.V., Gorudko, I.V., Drozd, E.S. et al. Redox regulation of morphology, cell stiffness, and lectin-induced aggregation of human platelets. Eur Biophys J 40, 195–208 (2011). https://doi.org/10.1007/s00249-010-0639-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-010-0639-2

Keywords

Navigation