Skip to main content

Advertisement

Log in

Morphofunctional Properties of Human Platelets Treated with Silver Nanoparticles

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied structural and functional properties of human platelets in the presence of nanosilver particles. Incubation with 0.05-5 μM silver nanoparticles suppressed platelet adhesion in a dose-dependent manner without affecting internal platelet structure; during adhesion, some granules were not exocytized. Spontaneous platelet activation was observed at nanoparticle concentrations 15-100 μM. Addition of 1-5 μM nanosilver to cells undergoing adhesion blocked massive platelet degranulation, but did not prevent the formation of lamellopodia. The maximum number of preserved granules in platelets was revealed in the presence of 2.5-5 μM silver nanoparticles: 50% after platelet preincubation with silver nanoparticles and 75-77% after stabilization of adherent platelets with silver nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gmoshiskii IV, Smirnova VV, Khotimchenko SA. Current state of the problem of assessing the safety of nanomaterials. Ross. Nanotekhnol. 2010;5(9-10):6-10. Russian.

    Google Scholar 

  2. Krutyakov YuA, Kudrinskiy AA, Olenin AYu, Lisichkin GV. Synthesis and properties of silver nanoparticles: Advances and prospects. Russ. Chem. Rev. 2008;(77)3:233-257.

    Article  CAS  Google Scholar 

  3. Makarov MS. Noncanonical methods of activation of human platelets. Med. Alfavit. 2015;3(11):30-35. Russian.

    Google Scholar 

  4. Makarov MS, Khvatov VB, Borovkova NV. Stabilization of human platelets on the adhesive substrate with use of ticagrelor. Mol. Med. 2015;(6):57-60. Russian.

    Google Scholar 

  5. Arora S, Jain J, Rajwade JM, Paknikar KM. Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol. Lett. 2008;179(2):93-100.

    Article  CAS  PubMed  Google Scholar 

  6. Bandyopadhyay D, Baruah H, Gupta B, Sharma S. Silver nanoparticles prevent platelet adhesion on immobilized fibrinogen. Indian J. Clin. Biochem. 2012;27(2):164-170.

    Article  CAS  PubMed  Google Scholar 

  7. de Mel A, Chaloupka K, Malam Y, Darbyshire A, Cousins B, Seifalian AM. A silver nanocomposite biomaterial for blood-contacting implants. J. Biomed. Mater. Res. A. 2012;100(9):2348-2357.

    PubMed  Google Scholar 

  8. Fu J, Ji J, Fan D, Shen J. Construction of antibacterial multilayer films containing nanosilver vialayer-by-layer assembly of heparin and chitosan-silver ions complex. J. Biomed. Mater. Res A. 2006;79(3. Р. 665-674.

  9. Huang H, Lai W, Cui M, Liang L, Lin Y, Fang Q, Liu Y, Xie L. An evaluation of blood compatibility of silver nanoparticles. Sci. Rep. 2016;6. ID 25518. doi: https://doi.org/10.1038/srep25518.

  10. Peters CG, Michelson AD, Flaumenhaft R. Granule exocytosis is required for platelet spreading: differential sorting of α-granules expressing VAMP-7. Blood. 2012;120(1):199-206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shrivastava S, Bera T, Singh SK, Singh G, Ramachandrarao P, Dash D. Characterization of antiplatelet properties of silver nanoparticles. ACS Nano. 2009;3(6):1357-1364.

    Article  CAS  PubMed  Google Scholar 

  12. Shrivastava S, Singh SK, Mukhopadhyay A, Sinha AS, Mandal RK, Dash D. Negative regulation of fibrin polymerization and clot formation by nanoparticles of silver. Colloids Surf. B Biointerfaces. 2011;82(1):241-246.

    Article  CAS  PubMed  Google Scholar 

  13. Sudheesh Kumar PT, Raj NM, Praveen G, Chennazhi KP, Nair SV, Jayakumar R. In vitro and In vivo evaluation of microporous chitosan hydrogel/nanofibrin composite bandage for skin tissue regeneration. Tissue Eng. Part A. 2013;19(3-4):380-392.

    Article  CAS  PubMed  Google Scholar 

  14. Walters BD, Stegemann JP. Strategies for directing the structure and function of 3D collagen biomaterials across length scales. Acta Biomater. 2014;10(4):1488-1501.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Makarov.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 3, pp. 148-154, July, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, M.S., Borovkova, N.V. & Storozheva, M.V. Morphofunctional Properties of Human Platelets Treated with Silver Nanoparticles. Bull Exp Biol Med 164, 241–246 (2017). https://doi.org/10.1007/s10517-017-3966-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-017-3966-9

Key Words

Navigation