Skip to main content
Log in

Identifying the structure of the active sites of human recombinant prolidase

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

In this paper we provide a detailed biochemical and structural characterization of the active site of recombinant human prolidase, a dimeric metalloenzyme, whose misfunctioning causes a recessive connective tissue disorder (prolidase deficiency) characterized by severe skin lesions, mental retardation and respiratory tract infections. It is known that the protein can host two metal ions in the active site of each constituent monomer. We prove that two different kinds of metals (Mn and Zn) can be simultaneously present in the protein active sites with the protein partially maintaining its enzymatic activity. Structural information extracted from X-ray absorption spectroscopy measurements have been used to yield a full reconstruction of the atomic environment around each one of the two monomeric active sites. In particular, as for the metal ion occupation configuration of the recombinant human prolidase, we have found that one of the two active sites is occupied by two Zn ions and the second one by one Zn and one Mn ion. In both dinuclear units a histidine residue is bound to a Zn ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The weight of the recombinant dimeric prolidase is 123,600 Da (Lupi et al. 2008).

  2. The relation between the measured absorption coefficient, μ(E), and the derived signal χ(k) is given in Appendix.

  3. As already commented in “Introduction,” we indicated that we have decided to employ the 3D crystallographic data of P. horikoshii OT3 as for the latter (unlike P. furiosus) both monomers have been resolved.

  4. See the web site: http://webusers.fis.uniroma3.it/~meneghini/. For recent application see (Maret et al. 2005).

  5. See Error Reporting Recommendations: A Report of the Standards and Criteria Committee (2002), URL http://ixs.csrri.iit.edu/

Abbreviations

APPro:

Aminopeptidase proline

Asp:

Aspartic acid

DESY:

Deutsches Elektronen-Synchrotron

DTT:

Dithiothreitrol

DW:

Debye–Waller

EMBL:

European Molecular Biology Laboratory

EXAFS:

Extended X-ray absorption fine structure

FT:

Fourier transform

Glu:

Glutamic acid

Gly:

Glycine

His:

Histidine

ICP-MS:

Inductively coupled plasma-mass spectrometry

MetAP:

Methionine aminopeptidase

MS:

Multiple scattering

PDB:

Protein Data Bank

PEPD:

Peptidase D: prolidase gene

Pfprol:

Pyrococcus furiosus prolidase

XAS:

X-ray absorption spectroscopy

Pro:

Proline

XANES:

X-ray absorption near edge structure

References

  • Benfatto M, Natoli CR, Bianconi A, Garcia J, Marcelli A, Fanfoni M, Davoli I (1986) Multiple-scattering regime and higher-order correlations in X-ray-absorption spectra of liquid solutions. Phys Rev B 34:5774–5781. doi:10.1103/PhysRevB.34.5774

    Article  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. doi:10.1093/nar/28.1.235

    Article  PubMed  CAS  Google Scholar 

  • Bianconi A, Congiu-Castellano A, Dell’Ariccia M, Giovannelli A, Morante S, Burattini E, Durham PJ (1986) Local Fe site structure in the tense-to-relaxed transition in carp deoxyhemoglobin: a XANES (X-ray absorption near edge structure) study. Proc Natl Acad Sci USA 83:7736–7740. doi:10.1073/pnas.83.20.7736

    Article  PubMed  CAS  Google Scholar 

  • Boland JJ, Crane SE, Baldeschwieler JD (1982) Theory of extended X-ray absorption fine structure: single and multiple scattering formalisms. J Chem Phys 77:142–153. doi:10.1063/1.443662

    Article  CAS  Google Scholar 

  • Browne P, O’Cuinn G (1983) The purification and characterization of a proline dipeptidase from guinea pig brain. J Biol Chem 258:6147–6154

    PubMed  CAS  Google Scholar 

  • Chinard FP (1952) Photometric estimation of praline and ornithine. J Biol Chem 199:91–95

    PubMed  CAS  Google Scholar 

  • Cosper NJ, D’souza VM, Scott RA, Holz RC (2001) Structural evidence that the methionyl aminopeptidase from Escherichia coli is a mononuclear metalloprotease. Biochemistry 40:13302–13309. doi:10.1021/bi010837m

    Article  PubMed  CAS  Google Scholar 

  • Cunningham DF, O’Connor B (1997) Proline specific peptidases. Biochim Biophys Acta 1343:160–186

    PubMed  CAS  Google Scholar 

  • D’souza VM, Bennet B, Copik AJ, Holz RC (2000) Divalent metal binding properties of the methionyl aminopeptidase from Escherichia coli. Biochemistry 39:3817–3826. doi:10.1021/bi9925827

    Article  PubMed  CAS  Google Scholar 

  • Du X, Tove S, Kast-Hutcheson K, Grunden AM (2005) Characterization of the dinuclear metal center of Pyrococcus furiosus prolidase by analysis of targeted mutants. FEBS Lett 579:6140–6146. doi:10.1016/j.febslet.2005.09.086

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Espla MD, Martin-Hernandez MC, Fox PF (1997) Purification and characterization of a prolidase from Lactobacillus casei subsp. casei IFPL 731. Appl Environ Microbiol 63:314–316

    PubMed  CAS  Google Scholar 

  • Fujii M, Nagaoka Y, Imamura S, Shimizu T (1996) Purification and characterization of a prolidase from Aureobacterium esteraromaticum. Biosci Biotechnol Biochem 60:1118–1122

    Article  PubMed  CAS  Google Scholar 

  • Ghosh M, Grunden AM, Dunn DM, Weiss R, Adams MW (1998) Characterization of native and recombinant forms of an unusual cobalt-dependent proline dipeptidase (prolidase) from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 180:4781–4789

    PubMed  CAS  Google Scholar 

  • Gurman SJ, Binsted N, Ross I (1986) A rapid, exact, curved-wave theory for EXAFS calculations II. The multiple-scattering contributions. J Phys Chem 19:1845–1861

    Google Scholar 

  • James F (1994) MINUIT: function minimization and error analysis reference manual version 94.1, CERN Program Library D506

  • Kobayashi M, Shimizu S (1999) Cobalt proteins. Eur J Biochem 261:1–9. doi:10.1046/j.1432-1327.1999.00186.x

    Article  PubMed  CAS  Google Scholar 

  • Koningsberger DC, Prins R (eds) (1988) X-ray absorption. Principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York

    Google Scholar 

  • Korbas M, Fulla Marsa D, Meyer-Klaucke W (2006) KEMP: a program script for automated biological X-ray absorption spectroscopy data reduction. Rev Sci Instrum 77:063105. doi:10.1063/1.2209954

    Article  CAS  Google Scholar 

  • Lee PA, Pendry JB (1975) Theory of the extended X-ray absorption fine structure. Phys Rev B 11:2795–2811. doi:10.1103/PhysRevB.11.2795

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lowther WT, Matthews BW (2002) Metalloaminopeptidases: common functional themes in disparate structural surroundings. Chem Rev 102:4581–4608. doi:10.1021/cr0101757

    Article  PubMed  CAS  Google Scholar 

  • Lupi A, Della Torre S, Campari E, Tenni R, Cetta G, Rossi A, Forlino A (2006) Human recombinant prolidase from eukaryotic and prokaryotic sources Expression, purification, characterization and long-term stability studies. FEBS J 273:5466–5478. doi:10.1111/j.1742-4658.2006.05538.x

    Article  PubMed  CAS  Google Scholar 

  • Lupi A, Tenni R, Rossi A, Cetta G, Forlino A (2008) Human prolidase and prolidase deficiency: an overview on the characterization of the enzyme involved in proline recycling and on the effects of its mutations. Amino Acids 35:739–752. doi:10.1007/s00726-008-0055-4

    Article  PubMed  CAS  Google Scholar 

  • Maher MJ, Ghosh M, Grunden AM, Menon AL, Adams MW, Freeman HC, Guss JM (2004) Structure of the prolidase from Pyrococcus furiosus. Biochemistry 43:2771–2783. doi:10.1021/bi0356451

    Article  PubMed  CAS  Google Scholar 

  • Maret M, Bley F, Meneghini C, Albrecht M, Khler J, Bucher E, Hazemann JL (2005) The Cr local structure in epitaxial CrPt3(111) films probed using polarized X-ray absorption fine structure. J Phys Condens Matter 17:2529–2541. doi:10.1088/0953-8984/17/17/001

    Article  CAS  Google Scholar 

  • Meneghini C, Morante S (1998) The active site structure of tetanus neurotoxin resolved by multiple scattering analysis in X-ray absorption spectroscopy. Biophys J 75:1953–1963. doi:10.1016/S0006-3495(98)77636-2

    Article  PubMed  CAS  Google Scholar 

  • Myara I, Charpentier C, Lemonnier A (1982) Optimal conditions for prolidase assay by proline calorimetric determination: application to iminodipeptiduria. Clin Chim Acta 125:193–205. doi:10.1016/0009-8981(82)90196-6

    Article  PubMed  CAS  Google Scholar 

  • O’Cuinn G, Fortrell PF (1975) Purification and characterization of an aminoacyl proline hydrolase from guinea-pig intestinal mucosa. Biochim Biophys Acta 391:388–395

    PubMed  Google Scholar 

  • Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Sync Rad 12:537–541. doi:10.1107/S0909049505012719

    Article  CAS  Google Scholar 

  • Rehr JJ, Albers RC (1990) Scattering-matrix formulation of curved-wave multiple-scattering theory: application to X-ray-absorption fine structure. Phys Rev B 41:8139–8149. doi:10.1103/PhysRevB.41.8139

    Article  Google Scholar 

  • Roderick SL, Matthews BW (1993) Structure of the cobalt-dependent methionine aminopeptidase from Escherichia coli: a new type of proteolytic enzyme. Biochemistry 32:3907–3912. doi:10.1021/bi00066a009

    Article  PubMed  CAS  Google Scholar 

  • Royce PM, Steinmann B (2002) Prolidase deficiency. In: Royce PM, Steinmann B (eds) Connective tissue and its heritable disorders. Wiley-Liss, New York

    Chapter  Google Scholar 

  • Tahirov TH, Oki H, Tsukihara T, Ogasahara K, Yutani K, Ogata K, Izu Y, Tsunasawa S, Kato I (1998) Crystal structure of methionine aminopeptidase from hyperthermophile, Pyrococcus furiosus. J Mol Biol 284:101–124. doi:10.1006/jmbi.1998.2146

    Article  PubMed  CAS  Google Scholar 

  • Teo BK, Lee PA (1979) Ab initio calculations of amplitude and phase functions for extended X-ray absorption fine structure spectroscopy. J Am Chem Soc 101:2815–2832. doi:10.1021/ja00505a003

    Article  CAS  Google Scholar 

  • Yang SI, Tanaka T (2008) Characterization of recombinant prolidase from Lactococcus lactis—changes in substrate specificity by metal cations and allosteric behaviour of the peptides. FEBS J 275:271–280. doi:10.1111/j.1742-4658.2008.06344.x

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto T, Matsubara F, Kawano E, Tsuru D (1983) Prolidase from bovine intestine: purification and characterization. J Biochem 94:1889–1896

    PubMed  CAS  Google Scholar 

  • Wilcox DE (1996) Binuclear metallohydrolases. Chem Rev 96:2435–2458. doi:10.1021/cr950043b

    Article  PubMed  CAS  Google Scholar 

  • Willingham K, Maher MJ, Grunden AM, Ghosh M, Adams MW, Freeman HC, Guss JM (2001) Crystallization and characterization of the prolidase from Pyrococcus furiosus. Acta Crystallogr D Biol Crystallogr 57:428–430. doi:10.1107/S0907444900020187

    Article  PubMed  CAS  Google Scholar 

  • Zabinsky SI, Rehr JJ, Ankudinov A, Albers RC, Eller MJ (1995) Multiple scattering calculations of X-ray absorption spectra. Phys Rev B 52:2995–3009. doi:10.1103/PhysRevB.52.2995

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank G.C. Rossi for a careful reading of the manuscript. V. Minicozzi, S. Morante and F. Stellato gratefully acknowledge INFN (Italy) for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Morante.

Additional information

Proceedings of the XIX Congress of the Italian Society of Pure and Applied Biophysics (SIBPA), Rome, September 2008.

S. Alleva is the co-first author.

Appendix

Appendix

The EXAFS signal,\( \chi (k ) , \) is defined by the formula

$$ {\chi (k )= \frac{{\mu (k )- \mu_{ 0} (k )}}{{\mu_{ 0} (k )}}}, $$
(4)

where \( \mu (k ) \) is the measured total absorption coefficient and \( \mu_{0} (k ) \) is the absorption coefficient of the isolated absorber. k is the wave vector of the extracted electron which is related to the incident photon energy, \( E, \) and the ionization energy, \( E_{0} , \) by the obvious relation

$$ {k = \sqrt {\frac{{2m\left( {E - E_{0} } \right)}}{{\hbar^{2} }}} }, $$
(5)

with m the electron mass and ħ the (reduced) Planck constant.

For the reader’s convenience we recall the theoretical formula describing the EXAFS signal. We give it for simplicity in the single scattering approximation which is valid for photon energies sufficiently higher than the threshold energy. Following the standard notation of Boland et al. (1982), it reads

$$ \chi (k) = S_{0}^{2} \sum\limits_{l} {\frac{{N_{l} }}{{kr_{l}^{2} }}\left| {f_{l} (k,{{\uppi}})} \right|\sin \left( {2kr_{l} + \varphi_{l} (k)} \right){\text{e}}^{{ - 2\sigma_{l}^{2} k^{2} }} {\text{e}}^{{ - {{2r_{l} } \mathord{\left/ {\vphantom {{2r_{l} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }(k)}} } , $$
(6)

where the sum runs over the different coordination shells around the absorber. N l is the number of scatterers of the l-th shell, located at a distance r l from the absorber and \( \sigma_{l}^{2} \) is the Debye–Waller factor. \( \left| {f_{l} (k,{{\uppi}})} \right| \) is the modulus of the back-scattering amplitude and \( \phi_{l} (k) \) the total scattering phase. \( S_{0}^{2} \) is an empirical quantity that accounts for all the many-body losses in photo-absorption processes and \( \lambda (k) \) is the photo-electron mean free path. In cases where also MS processes become important a formally similar expression holds in which, however, r l represents the length of the full MS path. Modulus and phase functions are in this case rather complicated expressions which depend on all the scattering events occurring along the MS path (see Lee and Pendry 1975; Benfatto et al. 1986; Gurman et al. 1986; Koningsberger and Prins 1988; Rehr and Albers 1990).

The quantitative analysis of the structural EXAFS signals is performed with the help of the FITEXA code, developed by one of the authors (C. Meneghini).Footnote 4 FITEXA exploits the FEFF8.2 package (Zabinsky et al. 1995) for the calculation of backscattering amplitudes, total phase shifts and photoelectron mean free path. Best fit is achieved by minimizing the quantity

$$ \xi^{2} = \frac{1}{{N_{\text{p}} }}\sum\limits_{i = 1}^{{N_{\text{p}} }} {\left[ {k_{i} (\chi_{\exp } (k_{i} ) - \chi_{\text{th}} (k_{i} )} \right]^{2} } , $$
(7)

where \( \chi_{ \exp } \) and \( \chi_{\text{th}} \) are the experimental and theoretical data, respectively, and the sum is over the number, N p, of the values of k at which data were collected. The MINUIT (James 1994) subroutine of CERN library is used for data refinement and statistical error analysis.

The fit quality is measured by the associated R 2-factor defined by the formulaFootnote 5

$$ R^{2} = 100\frac{{N_{\text{p}} \xi^{2} }}{{W_{0}^{2} }}\% \;{\text{with}}\;W_{0}^{2} = \sum\limits_{i} {\left[ {k_{i} \chi_{\exp } (k_{i} )} \right]^{2} } $$
(8)

A value of R 2 of about 10% is to be considered satisfactory for complex biological molecules.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besio, R., Alleva, S., Forlino, A. et al. Identifying the structure of the active sites of human recombinant prolidase. Eur Biophys J 39, 935–945 (2010). https://doi.org/10.1007/s00249-009-0459-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0459-4

Keywords

Navigation