Skip to main content
Log in

Gating the pore of potassium leak channels

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

A key feature of potassium channel function is the ability to switch between conducting and non-conducting states by undergoing conformational changes in response to cellular or extracellular signals. Such switching is facilitated by the mechanical coupling of gating domain movements to pore opening and closing. Two-pore domain potassium channels (K2P) conduct leak or background potassium-selective currents that are mostly time- and voltage-independent. These channels play a significant role in setting the cell resting membrane potential and, therefore modulate cell responsiveness and excitability. Thus, K2P channels are key players in numerous physiological processes and were recently shown to also be involved in human pathologies. It is well established that K2P channel conductance, open probability and cell surface expression are significantly modulated by various physical and chemical stimuli. However, in understanding how such signals are translated into conformational changes that open or close the channels gate, there remain more open questions than answers. A growing line of evidence suggests that the outer pore area assumes a critical role in gating K2P channels, in a manner reminiscent of C-type inactivation of voltage-gated potassium channels. In some K2P channels, this gating mechanism is facilitated in response to external pH levels. Recently, it was suggested that K2P channels also possess a lower activation gate that is positively coupled to the outer pore gate. The purpose of this review is to present an up-to-date summary of research describing the conformational changes and gating events that take place at the K2P channel ion-conducting pathway during the channel regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Acknowledgments

This research was funded by grants from the Binational (US-Israel) Science Foundation (grant 2005112), the Israel Science Foundation (grant 431/03) and the Zlotowski Center for Neuroscience. We thank D. Dotan-Cohen for graphic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noam Zilberberg.

Additional information

“Proteins, membranes and cells: the structure–function nexus”. Contributions from the annual scientific meeting (including a special symposium in honour of Professor Alex Hope of Flinders University, South Australia) of the Australian Society for Biophysics held in Canberra, ACT, Australia, September 28 to October 1, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, A., Ben-Abu, Y. & Zilberberg, N. Gating the pore of potassium leak channels. Eur Biophys J 39, 61–73 (2009). https://doi.org/10.1007/s00249-009-0457-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0457-6

Keywords

Navigation