Skip to main content

Advertisement

Log in

FLIM and emission spectral analysis of caspase-3 activation inside single living cell during anticancer drug-induced cell death

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Two-photon excitation (TPE) fluorescence lifetime imaging microscopy (FLIM) and emission spectral imaging (ESI) are powerful tools for fluorescence resonance energy transfer (FRET) measurement. In this study, we use these two techniques to analyze caspase-3 activation inside single living cells during anticancer drug-induced human lung adenocarcinoma (ASTC-a-1) cell death. TPE-ESI of SCAT3, a caspase-3 indicator based on FRET, was performed inside single living cell stably expressing SCAT3. The TPE-ESI measurement was performed using 780 nm excitation which was considered to selectively excite the donor ECFP of SCAT3 by measuring the emission ratio of 526 to 476 nm. The emission peak at 526 nm disappeared and that of 476 nm increased after STS or bufalin treatment, but taxol treatment did not induce a significant change for the SCAT3 emission spectra, indicating that caspase-3 was activated during STS- or bufalin-induced cell apoptosis, but was not involved in taxol-induced PCD. Fluorescence lifetime of ECFP inside living cells was acquired using FLIM. The lifetime of ECFP was the same as that of the control group after taxol treatment, but increased from 1.83 ± 0.02 to 2.05 ± 0.03 and 1.90 ± 0.03 ns, respectively after STS and bufalin treatment, which agree with the results obtained using TPE-ESI. Taken together, TPE-FLIM and ESI analysis were proved to be valuable approaches for monitoring caspase-3 activation inside single living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ASTC-a-1 cell:

Human adenocarcinoma cell

ECFP:

Enhanced cyan fluorescent protein

EYFP:

Enhanced yellow fluorescent protein

ESI:

Emission spectral imaging

FLIM:

Fluorescence lifetime imaging microscopy

FRET:

Fluorescence resonance energy transfer

PCD:

Programmed cell death

STS:

Staurosporine

SCAT3:

A sensor for activated caspase-3 based on FRET

TPE:

Two-photon excitation

Venus:

Mutation of EYFP

References

  • Andersson M, Sjöstrand J, Petersen A, Honarvar AKS, Karlsson J-O (2000) Caspase and proteasome activity during staurosporine-induced apoptosis in lens epithelial cells. Invest Ophthalmol Vis Sci 41:2623–2632

    PubMed  CAS  Google Scholar 

  • Becker W, Bergmann A, Biskup C, Zimmer T, Klöcker N, Benndorf K (2002) Multi-wavelength TCSPC lifetime imaging. Proc SPIE 4620:79–84. doi:10.1117/12.470679

    Article  Google Scholar 

  • Becker W, Bergmann A, Hink MA, König K, Benndorf K, Biskup C (2004) Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech 63:58–66. doi:10.1002/jemt.10421

    Article  PubMed  CAS  Google Scholar 

  • Berney C, Danuser G (2003) FRET or no FRET: a quantitative study. Biophys J 84:3992–4010

    Article  PubMed  CAS  Google Scholar 

  • Bird DK, Eliceiri KW, Fan C-H, White JG (2004) Simultaneous two-photon spectral and lifetime fluorescence microscopy. Appl Opt 43:5173–5182. doi:10.1364/AO.43.005173

    Article  PubMed  Google Scholar 

  • Biskup C, Zimmer T, Kelbauskas L, Hoffmann B, Klöcker N, Becker W, Bergmann A, Benndorf K (2007) Multi-dimensional fluorescence lifetime and FRET measurements. Microsc Res Tech 70:442–451. doi:10.1002/jemt.20431

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Wang J, Xing D, Chen WR (2007) Spatio-temporal dynamic analysis of Bid activation and apoptosis induced by alkaline condition in human lung adenocarcinoma cell. Cell Physiol Biochem 20:569–578. doi:10.1159/000107540

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Wang X, Sun L, Wang L, Xing D, Mok M (2008) Taxol induces caspase-independent cytoplasmic vacuolization and cell death through endoplasmic reticulum (ER) swelling in ASTC-a-1 cells. Cancer Lett 270:164–172. doi:10.1016/j.canlet.2008.05.008

    Article  PubMed  CAS  Google Scholar 

  • Cheng P, Lin B, Kao F, Gu M, Xu M, Gan X, Huang M, Wang Y (2001) Multi-photon fluorescence microscopy—the response of plant cells to high intensity illumination. Micron 32:661–669. doi:10.1016/S0968-4328(00)00068-8

    Article  PubMed  CAS  Google Scholar 

  • Clegg RM, Murchie AI, Lilley DM (1993) The four-way DNA junction: a fluorescence resonance energy transfer study. Braz J Med Biol Res 26:405–416

    PubMed  CAS  Google Scholar 

  • Day TW, Najafi F, Wu CH, Safa AR (2006) Cellular FLICE-like inhibitory protein (c-FLIP): a novel target for taxol-induced apoptosis. Biochem Pharmacol 71:1551–1561. doi:10.1016/j.bcp.2006.02.015

    Article  PubMed  CAS  Google Scholar 

  • dos Remedios CG, Miki M, Barden JA (1987) Fluorescence resonance energy transfer measurements of distances in actin and myosin: A critical evaluation. J Muscle Res Cell Motil 8:97–117. doi:10.1007/BF01753986

    Article  PubMed  CAS  Google Scholar 

  • Fan GY, Fujisaki H, Miyawaki A, Tsay R-K, Tsien RY, Ellisman MH (1999) Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. Biophys J 76:2412–2420

    Article  PubMed  CAS  Google Scholar 

  • Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 6:55–75. doi:10.1002/andp.19484370105

    Article  Google Scholar 

  • Galvez EM, Zimmermann B, Rombach-Riegraf V, Bienert R, Gräber P (2008) Fluorescence resonance energy transfer in single enzyme molecules with a quantum dot as donor. Eur Biophys J. doi:10.1007/s00249-008-0351-7

  • Gordon GW, Berry G, Liang XH, Levine B, Herman B (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74:2702–2713

    Article  PubMed  CAS  Google Scholar 

  • Green DR (1998) Apoptotic pathways: the roads to ruin. Cell 94:695–698. doi:10.1016/S0092-8674(00)81728-6

    Article  PubMed  CAS  Google Scholar 

  • Huisman C, Ferreira CG, Bröker LE, Rodriguez JA, Smit EF, Postmus PE, Kruyt FAE, Giaccone G (2002) Paclitaxel triggers cell death primarily via caspase-independent routes in the non-small cell lung cancer cell line NCI-H460. Clin Cancer Res 8:596–606

    PubMed  CAS  Google Scholar 

  • Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395. doi:10.1038/nbt896

    Article  PubMed  CAS  Google Scholar 

  • Kerr JF, Winterford CM, Harmon BV (1994) Apoptosis: its significance in cancer and cancer therapy. Cancer 73:2013–2026. doi:10.1002/1097-0142(19940415)73:8<2013::AID-CNCR2820730802>3.0.CO;2-J

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Zhang Z, Zeng S, Zhou S, Liu B, Liu Q, Yang J, Luo Q (2006) TRAIL-induced apoptosis proceeding from caspase-3-dependent and -independent pathways in distinct HeLa cells. Biochem Biophys Res Commun 346:1136–1141. doi:10.1016/j.bbrc.2006.05.209

    Article  PubMed  CAS  Google Scholar 

  • Ling Y-H, Zhong Y, Roman P-S (2001) Disruption of cell adhesion and caspase-mediated proteolysis of β- and γ-Catenins and APC protein in raclitaxel-induced apoptosis. Mol Pharmacol 59:593–603

    PubMed  CAS  Google Scholar 

  • Lu K-H, Lue K-H, Liao H-H, Lin K-L, Chung J-G (2005) Induction of caspase-3-dependent apoptosis in human leukemia HL-60 cells by paclitaxel. Clin Chim Acta 357:65–73. doi:10.1016/j.cccn.2005.02.003

    Article  PubMed  CAS  Google Scholar 

  • Masuda Y, Kawazoe N, Nakajo S, Yoshida T, Kuroiwa Y, Nakaya K (1995) Bufalin induces apoptosis and influences the expression of apoptosis related genes in human leukemia cells. Leuk Res 19:549–556. doi:10.1016/0145-2126(95)00031-I

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887. doi:10.1038/42264

    Article  PubMed  CAS  Google Scholar 

  • Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90. doi:10.1038/nbt0102-87

    Article  PubMed  CAS  Google Scholar 

  • Neher RA, Neher E (2004) Applying spectral fingerprinting to the analysis of FRET images. Microsc Res Tech 64:185–195. doi:10.1002/jemt.20078

    Article  PubMed  Google Scholar 

  • Ofir R, Seidman R, Rabinski T, Krup M, Yavelsky V, Weinstein Y, Wolfson M (2002) Taxol-induced apoptosis in human SKOV3 ovarian and MCF7 breast carcinoma cells is caspase-3 and caspase-9 independent. Cell Death Differ 9:636–642. doi:10.1038/sj.cdd.4401012

    Article  PubMed  CAS  Google Scholar 

  • Patterson G, Day RN, Piston D (2001) Fluorescent protein spectra. J Cell Sci 114:837–838

    PubMed  CAS  Google Scholar 

  • Pelet S, Previte MJR, Kim D, Kim KH, Su T-TJ, So PTC (2006a) Frequency domain lifetime and spectral imaging microscopy. Microsc Res Tech 69:861–874. doi:10.1002/jemt.20361

    Article  PubMed  Google Scholar 

  • Pelet S, Previte MJR, So PTC (2006b) Comparing the quantification of Förster resonance energy transfer measurement accuracies based on intensity, spectral, and lifetime imaging. J Biomed Opt 11:034017. doi:10.1117/1.2203664

    Article  CAS  Google Scholar 

  • Pepperkok R, Squire A, Geley S, Bastiaens PI (1999) Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy. Curr Biol 9:269–272. doi:10.1016/S0960-9822(99)80117-1

    Article  PubMed  CAS  Google Scholar 

  • Rehm M, Düßmann H, Jänicke RU, Tavaré JM, Kögel D, Prehn JH (2002) Single cell fluorescence resonance energy transfer analysis demonstrates that caspase activation during apoptosis is a rapid process. Role of caspase-3. J Biol Chem 277:24506–24514. doi:10.1074/jbc.M110789200

    Article  PubMed  CAS  Google Scholar 

  • Rosales T, Georget V, Malide D, Smirnov A, Xu J, Combs C, Knutson JR, Nicolas J-C, Royer CA (2007) Quantitative detection of the ligand-dependent interaction between the androgen receptor and the co-activator, Tif2, in live cells using two color, two photon fluorescence cross-correlation spectroscopy. Eur Biophys 36:153–161. doi:10.1007/s00249-006-0095-1

    Article  CAS  Google Scholar 

  • Salako MA, Carter MJ, Kass GEN (2006) Coxsackievirus protein 2BC blocks host cell apoptosis by inhibiting caspase-3. J Biol Chem 281:16296–16304. doi:10.1074/jbc.M510662200

    Article  PubMed  CAS  Google Scholar 

  • Shajahan AN, Wang A, Decker M, Minshall RD, Liu MC, Clarke R (2007) Caveolin-1 tyrosine phosphorylation enhances paclitaxel-mediated cytotoxicity. J Biol Chem 282:5934–5943. doi:10.1074/jbc.M608857200

    Article  PubMed  CAS  Google Scholar 

  • Son Y-O, Choi K-C, Lee J-C, Kook S-H, Lee S-K, Takada K, Jang Y-S (2006) Involvement of caspase activation and mitochondrial stress in taxol-inducedapoptosis of Epstein–Barr virus-infected Akata cells. Biochim Biophys Acta 1760:1894–1902

    PubMed  CAS  Google Scholar 

  • Squirrell JM, Wokosin DL, White JG, Bavister BD (1999) Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol 17:763–767. doi:10.1038/11698

    Article  PubMed  CAS  Google Scholar 

  • Stryer L, Haugland R (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci USA 58:719–726. doi:10.1073/pnas.58.2.719

    Article  PubMed  CAS  Google Scholar 

  • Suhling K, French PMW, Phillips D (2005) Time-resolved fluorescence microscopy. Photochem Photobiol Sci 4:13–22. doi:10.1039/b412924p

    Article  PubMed  CAS  Google Scholar 

  • Sun XM, MacFarlanc M, Zhuang J, Wolf BB, Green DR, Cohen GM (1999) Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J Biol Chem 274:5053–5060. doi:10.1074/jbc.274.8.5053

    Article  PubMed  CAS  Google Scholar 

  • Takemoto K, Nagai T, Miyawaki A, Miura M (2003) Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects. J Cell Biol 160:235–243. doi:10.1083/jcb.200207111

    Article  PubMed  CAS  Google Scholar 

  • Thaler C, Koushik SV, Blank PS, Vogel SS (2005) Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer. Biophys J 89:2736–2749. doi:10.1529/biophysj.105.061853

    Article  PubMed  CAS  Google Scholar 

  • Valentijn AJ, Metcalfe AD, Kott J, Streuli CH, Gilmore AP (2003) Spatial and temporal changes in Bax subcellular localization during anoikis. J Cell Biol 162:599–612. doi:10.1083/jcb.200302154

    Article  PubMed  CAS  Google Scholar 

  • van Kuppeveld FJ, Melchers WJ, Willems PH, Gadella TW Jr (2002) Homomultimerization of the coxsackievirus 2B protein in living cells visualized by fluorescence resonance energy transfer microscopy. J Virol 76:9446–9456. doi:10.1128/JVI.76.18.9446-9456.2002

    Article  PubMed  CAS  Google Scholar 

  • Wan Q, Liu L, Xing D, Chen Q (2008) Bid is required in NPe6-PDT-induced apoptosis. Photochem Photobiol 84:250–257

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Chen T, Xing D, Wang J, Wu Y (2005) Measuring dynamics of caspase-3 activity in living cells using FRET technique during apoptosis induced by high fluence low power laser irradiation. Lasers Surg Med 36:2–7. doi:10.1002/lsm.20130

    Article  PubMed  Google Scholar 

  • Wang X, Chen T, Sun L, Cai J, Wu M, Mok M (2008) Live morphological analysis of taxol-induced cytoplasmic vacuoliazation in human lung adenocarcinoma cells. Micron. doi:10.1016/j.micron.2008.04.007

  • Watabe M, Ito K, Masuda Y, Nakajo S, Nakaya K (1998) Activation of AP-1 is required for bufalin-induced apoptosis in human leukemia U937 cells. Oncogene 16:779–787. doi:10.1038/sj.onc.1201592

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Xing D, Chen WR (2006a) Single cell FRET imaging for determination of pathway of tumor cell apoptosis induced by photofrin-PDT. Cell Cycle 5:729–734

    PubMed  CAS  Google Scholar 

  • Wu Y, Xing D, Luo S, Tang Y, Chen Q (2006b) Detection of caspase-3 activation in single cells by fluorescence resonance energy transfer during photodynamic therapy induced apoptosis. Cancer Lett 235:239–247. doi:10.1016/j.canlet.2005.04.036

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Xing D, Chen WR, Wang X (2007) Bid is not required for Bax translocation during UV-induced apoptosis. Cell Signal 19:2468–2478. doi:10.1016/j.cellsig.2007.07.024

    Article  PubMed  CAS  Google Scholar 

  • Xia Z, Liu Y (2001) Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys J 81:2395–2402

    Article  PubMed  CAS  Google Scholar 

  • Xue LY, Chiu SM, Oleinick NL (2003) Staurosporine-induced death of MCF-7 human breast cancer cells: distinction between caspase-3-dependent steps of apoptosis and the critical lethal lesions. Exp Cell Res 283:135–145. doi:10.1016/S0014-4827(02)00032-0

    Article  PubMed  CAS  Google Scholar 

  • Yeh J-Y, Huang WJ, Kan S-F, Wang PS (2003) Effects of bufalin and cinobufagin on the proliferation of androgen dependent and independent prostate cancer cells. Prostate 54:112–124. doi:10.1002/pros.10172

    Article  PubMed  CAS  Google Scholar 

  • Zeng S, Lu X, Zhan C, Chen WR, Xiong W, Jacuqes SL, Luo Q (2006) Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism. Opt Lett 31:1091–1093. doi:10.1364/OL.31.001091

    Article  PubMed  Google Scholar 

  • Zeng S, Li D, Liu J, Luo Q (2007) Pulse broadening of the femtosecond pulses in a Gaussian beam passing an angular disperser. Opt Lett 32:1180–1182. doi:10.1364/OL.32.001180

    Article  PubMed  Google Scholar 

  • Zhang J, Xing D, Gao X (2008) Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway. J Cell Physiol 217:518–528. doi:10.1002/jcp.21529

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Wang G, Fernig DG, Rudland PS, Webb SED, Barraclough R, Martin-Fernandez M (2005) Interaction of metastasis-inducing S100A4 protein in vivo by fluorescence lifetime imaging microscopy. Eur Biophys J 34:19–27. doi:10.1007/s00249-004-0428-x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Prof. M. Miura for providing us with the SCAT3 plasmid and Prof. Charles and Andrew for providing us with Bax-ECFP and Bax-EYFP plasmid. This study was supported by National Natural Science Foundation of China (Grant No. 30670507 and 60627003) and the Natural Science Foundation of Guangdong Province (F051001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongsheng Chen.

Additional information

W. Pan and J. Qu contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, W., Qu, J., Chen, T. et al. FLIM and emission spectral analysis of caspase-3 activation inside single living cell during anticancer drug-induced cell death. Eur Biophys J 38, 447–456 (2009). https://doi.org/10.1007/s00249-008-0390-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-008-0390-0

Keywords

Navigation