Skip to main content
Log in

RyR channels and glucose-regulated pancreatic β-cells

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Ryanodine receptor channel model is introduced to a dynamical model of pancreatic β-cells to discuss the effects of RyR channels and glucose concentration on membrane potential. The results show Ca2+ concentration changes responding to enhance of glucose concentration is more quickly than that of activating RyR channels, and both methods can induce bursting action potential and increase free cytosolic Ca2+ concentration. An interesting finding is that moderate stimulation to RyR channels will result in a kind of “complex bursting”, which is more effective in enhancing average Ca2+ concentration and insulin section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ashcroft FM, Harrison DE, Ashcroft SJH (1984) Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells. Nature 321:446–448

    Article  ADS  Google Scholar 

  • Atwater I, Dawson CM, Scott A, Eddlestone G, Rojas E (1980) The nature of the oscillatory behavior in electrical activity for pancreatic β-cells. In: Thieme G (ed) Biochemistry and biophysics of the pancreatic β-cell. Springer, Heidelberg, pp 100–107

    Google Scholar 

  • Atwater R, Carroll P, Li MX (1989) Electrophysiology of the pancreatic β-cell. In: Drazin B, Melmed S, LeRoith D (eds) Insulin Seretion. Alan R. Liss, Inc., New York, pp. 49–68

    Google Scholar 

  • Bergsten P (1995) Slow and fast oscillations of cytoplasmic Ca2+ in pancreatic islets correspond to pulsatile insulin release. Am J Physiol 268:E282–E287

    Google Scholar 

  • Bergsten P, Grapengiesser E, Gylfe E, Tengholm A, Hellman B (1994) Synchronous oscillations of cytoplasmic Ca2+ and insulin release in glucose-stimulated pancreatic islets. J Biol Chem 269:8749–8753

    Google Scholar 

  • Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signaling. Nature 341:197–205

    Article  ADS  Google Scholar 

  • Bertram R, Sherman A (2004) A calcium-based phantom bursting model for pancreatic Islets. Bull Math Biol 66:1313–1344

    Article  MathSciNet  Google Scholar 

  • Bertram R, Smolen P, Sherman A, Mears D, Atwater I, Martin F, Soria B (1995) A role for calcium release-activated current (CRAC) in cholinergicmodulation of electrical activity in pancreatic β-cells. Biophys J 68:2323–2332

    Google Scholar 

  • Bertram R, Previte J, Sherman A, Kinard TA, Satin LS (2000) The phantom burster model for pancreatic β-cells. Biophys J 79:2880–2892

    Article  Google Scholar 

  • Bertram R, Satin L, Zhang M, Smolen P, Sherman A (2004) Calcium and glycolysis mediate multiple bursting modes in pancreatic islets. Biophys J 87:3074–3087

    Article  Google Scholar 

  • Chay TR, Keizer J (1983) Minimal model for membrane oscillations in the pancreatic β-cell. Biophys J 42:181–190

    Google Scholar 

  • Cook DL, Crill WE, Porte D Jr (1981) Glucose and acetylcholine have different effects on the plateau pacemaker of pancreatic islet cells. Diabetes 30:558–561

    Article  Google Scholar 

  • De Young GW, Keizer J (1992) A single-pool inositol 1,4,5-triphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc Natl Acad Sci USA 89:9895–9899

    Article  ADS  Google Scholar 

  • Dean PM, Matthews EK (1968) Electrical activity in pancreatic islet cells. Nature 219:389–390

    Article  ADS  Google Scholar 

  • Dean PM, Mathews EK (1970) Glucose-induced electrical activity in pancreatic islet cells. J Physiol (Lond) 210:255–264

    Google Scholar 

  • Falke LC, Gillis KD, Pressel DM, Misler S (1989) ‘Perforated patch recording’ allows long-term monitoring of metabolite-induced electrical activity and voltage-dependent Ca2+ currents in pancreatic islet β-cells. FEBS Lett 251:167–172

    Article  Google Scholar 

  • Grodsky GM (1989) A new phase of insulin secretion. How will it contribute to our understanding of β-cell function? Diabetes 38:673–C678

    Article  Google Scholar 

  • Halban PA, Wollheim CB, Blondel B, Meda P, Niesor EN, Mintz DH (1982) The possible importance of contact between pancreatic islet cells for the control of insulin release. Endocrinology 111:86–94

    Article  Google Scholar 

  • Henquin JC, Meissner HP (1984) Significance of ionic fluxes and changes in membrane potential for stimulus-secretion coupling in pancreatic β-cells. Experientia 40:1043–1052

    Article  Google Scholar 

  • Henquin JC, Meissner HP, Schmeer S (1982) Cyclic variations of glucose-induced electrical activity in pancreatic B cells. Pflügers Arch 393:322–327

    Article  Google Scholar 

  • Hernandez-Cruz A, Escobar AL, Jimenez N (1997) Ca2+-induced Ca2+ release phenomena in mammalian sympathetic neurons are critically dependent on the rate of rise of trigger Ca2+. J Gen Physiol 109:147–C167

    Article  Google Scholar 

  • Holz GG, Leech CA, Heller RS, Castonguay M, Habener JF (1999) CAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic β-cells: a Ca2+ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7-37). J Biol Chem 274:14147–C14156

    Article  Google Scholar 

  • Islam MS,Rorsman P, Berggren PO (1992) Ca2+-induced Ca2+ release in insulin-secreting cells. FEBS Lett 296:287–C291

    Article  Google Scholar 

  • Islam MS, Leibiger I, Leibiger B, Rossi D, Sorrentino V, Ekström TJ, Westerblad H, Andrade FH, Berggren PO (1998) In situ activation of the type 2 ryanodine receptor in pancreatic β-cells requires cAMP-dependent phosphorylation. Proc Natl Acad Sci USA 95:6145–C6150

    Article  ADS  Google Scholar 

  • Islam MS (2002) The ryanodine receptor calcium channel of β-cells molecular regulation and physiological significance. Diabetes 51:1299–1308

    Article  Google Scholar 

  • Johnson JD, Kuang S, Misler S, Polonsky K (2004) Ryanodine receptors in human pancreatic β-cells: localization and effects on insulin secretion. FASEB 18:878–880

    Google Scholar 

  • Keener J, Sneyd J (1998) Mathematical physiology, chapter 6: bursting exlectrical activity. Springer, Heidelberg, pp 191–196

  • Keizer J, Levine L (1996) Ryanodine receptor adaptation and Ca2+-lnduced Ca2+ release-dependent Ca2+ oscillations. Biophy J 71:3477–3487

    Google Scholar 

  • Keizer J, Magnus G (1989) ATP-sensitive potassium channel and bursting in the pancreatic β-cell. Biophys J 56:229–242

    Google Scholar 

  • Keizer J, Smolen P (1991) Bursting electrical activity in pancreatic β-cells caused by Ca2+-and voltage-inactivated Ca2+ channels. Proc Natl Acad Sci USA 88:3897–3901

    Article  ADS  Google Scholar 

  • Kinard TA, de Vries G, Sherman A, Satin LS (1999) Modulation of the bursting properties of single mouse pancreatic β-cells by artificial conductances. Biophys J 6:1423–1435

    Article  Google Scholar 

  • Lang DA, Matthews DR, Burnett M, Turner RC (1981) Brief, irregular oscillations of basal plasma insulin and glucose concentrations in diabetic man. Diabetes 30:435–439

    Article  Google Scholar 

  • Li YX, Rinzel J (1994) Equations for InsP3 receptor-mediated [Ca2+] i oscillations derived from a detailed kinetic model: a Hodgkin–Huxley like formalism. J Theor Biol 166:461–473

    Article  Google Scholar 

  • Liu YJ, Tengholm A, Grapengiesser E, Hellman B, Gylfe E (1998) Origin of slow and fast oscillations of Ca2+ in mouse pancreatic islets. J Physiol 508.2:471–481

    Article  Google Scholar 

  • Longo EA, Tornheim K, Deeneyt JT, Varnump BA, Tillotson D, Prentki M, Corkey BE (1991) Oscillations in cytosolic free Ca2+, oxygen consumption, and insulin secretion in glucose-stimulated rat pancreatic islets. J Biol Chem 266:9314–9319

    Google Scholar 

  • Maechler P, Wollheim CB (2000) Mitochondrial signals in glucose-stimulated insulin secretion in the β-cell. J Physiol 529.1:49–56

    Article  Google Scholar 

  • Meissner HP, Atwater IJ (1976) The kinetics of electrical activity of beta cells in response to a square wave stimulation with glucose or glibenclamide. Horm Metab Res 8:C11–C16

    Google Scholar 

  • Pipeleers D, Veld PI, Maes E, Winkel MVD (1982) Glucoseinduced insulin release depends on functional cooperation between islet cells. Proc Natl Acad Sci USA 79:7322–7325

    Article  ADS  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in C, Second Edition. Cambridge University Press, Cambridge, pp 496–521

    MATH  Google Scholar 

  • Rinzel J (1985) Bursting oscillations in an excitable membrane model. In: Sleeman BD, Jarvis RJ (eds) Ordinary and partial differential equations. Lect Notes Math (Springer, Berlin) 1151:C304–C316

  • Rinzel J, Lee YS (1986) On different mechanisms for membrane potential bursting. In: Othmar HG (ed) Nonlinear oscillations in biology and chemistry. Lect Notes Biomat (Springer, Berlin) 66:C19–C33

  • Roe MW, Lancaster ME, Mertz RJ, Worley III JF, Dukes ID (1993) Voltage dependent intracellular calcium release from mouse islets stimulated by glucose. J Biol Chem 268:C9953–C9956

    Google Scholar 

  • Sánchez-Andrés JV, Gomis A, Valdeolmillos M (1995) The electrical activity of mouse pancreatic β-cells recorded in vivo shows glucose-dependent oscillations. J Physiol 486:223–228

    Google Scholar 

  • Santos RM, Rosario LM, Nadal A, Garcia-Sancho J, Soria B, Valdeolmillos M (1991) Widespread synchronous [Ca2+] i oscillations due to bursting electrical activity in single pancreatic islets. Pflügers Arch 418:417–422

    Article  Google Scholar 

  • Sato Y, Anello M, Henquin JC (1999) Glucose regulation of insulin secretion independent of the opening or clocuse of adenosine triphosphate-sensitive K+ channels in β-cells. Endocrinology 140:2252–2257

    Article  Google Scholar 

  • Shuai JW, Jung P (2002) Stochastic properties of Ca2+ release of inostitol 1,4,5-tripshosphate receptor clusters. Biophys J 83:87–97

    Google Scholar 

  • Smith PA, Ashcroft FM, Rorsman P (1990) Simultaneous recordings of glucose dependent electrical activity and atp-regulated K+-currents in isolated mouse pancreatic β-cells. FEBS Lett 26:187–190

    Article  Google Scholar 

  • Takasawa S, Akiyama T, Nata K, Kuroki M, Tohgo A, Noguchi N, Kobayashi S, Kato I, Katada T, Okamoto H (1998) Cyclic ADP-ribose and inositol 1,4,5-trisphosphate as alternate second messengers for intracellular Ca2+ mobilization in normal and diabetic β-cells. J Biol Chem 273:C2497–C2500

    Article  Google Scholar 

  • Valdeolmillos M, Gomis A, Sánchez-Andrés JV (1996) In vivo synchronous membrane potential oscillations in mouse pancreatic β-cells: lack of co-ordination between islets. J Physiol (Lond) 493:9–18

    Google Scholar 

  • de Vries G, Sherman A (2000) Channel sharing in pancreatic beta-cells revisited: Enhancement of emergent bursting by noise. J Theor Biol 207:513–530

    Article  Google Scholar 

  • Wiederkehr A, Wollheim CB (2006) Implication of mitochondria in insulin secretion and action. Endocrinology 47(6):2643–2649

    Article  Google Scholar 

  • Wierschem K, Bertram R (2004) Complex bursting in pancreatic islets: a potential glycolytic mechanism. J Theor Biol 228:513–521

    Article  Google Scholar 

  • Zeng X, Qu A, Lou X, Xu J, Wang J, Wu H, Zhou Z (2000) Ca2+ signals induced from calcium stores in pancreatic islet β cells. Chin Sci Bull 45(1):51–56

    Article  Google Scholar 

  • Zhan X, Wu D, Yang L, Liu Q, Jia Y (2007) Effects of both glucose and IP 3 concentrations on action potentials in pancreatic β-cells. Eur Biophys J 36:187–197

    Article  Google Scholar 

  • Zhang M, Goforth P, Bertram R, Sherman A, Satin L (2003) The Ca2+ dynamics of isolated mouse β-cells and islets: implications for mathematical models. Biophys J 84:2852–2870

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No.10575041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, X., Yang, L., Yi, M. et al. RyR channels and glucose-regulated pancreatic β-cells. Eur Biophys J 37, 773–782 (2008). https://doi.org/10.1007/s00249-008-0269-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-008-0269-0

Keywords

Navigation