Skip to main content

Advertisement

Log in

Metal effects on the membrane interactions of amyloid-β peptides

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Aβ(1–42) peptide, found as aggregated species in Alzheimer’s disease brain, is linked to the onset of dementia. We detail results of 31P and 2H solid-state NMR studies of model membranes with Aβ peptides and the effect of metal ions (Cu2+ and Zn2+), which are found concentrated in amyloid plaques. The effects on the lipid bilayer and the peptide structure are different for membrane incorporated or associated peptides. Copper ions alone destabilise the lipid bilayer and induce formation of smaller vesicles, but not when Aβ(1–42) is associated with the bilayer membrane. Aβ(25–35), a fragment from the C-terminal end of Aβ(1–42), which lacks the metal coordinating sites found in the full length peptide, is neurotoxic to cortical cortex cell cultures. Addition of metal ions has little effect on membrane bilayers with Aβ(25–35) peptides. 31P magic angle spinning NMR data show that Aβ(1–42) and Aβ(1–42)-Cu2+ complexes interact at the surface of anionic phospholipid membranes. Incorporated peptides, however, appear to disrupt the membrane more severely than associated peptides. Solid-state 13C NMR was used to compare structural changes of Aβ(1–42) to those of Aβ(25–35) in model membrane systems of anionic phospholipids and cholesterol. The Aβ peptides appeared to have an increase in β-strand structure at the C-terminus when added to phospholipid liposomes. The inclusion of Cu2+ also influenced the observed chemical shift of residues from the C-terminal half, providing structural clues for the lipid-associated Aβ/metal complex. The results point to the complex pathway(s) for toxicity of the full-length peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

(CP)MAS:

(Cross-polarisation) Magic angle spinning

CQ:

Clioquinol

CSA:

Chemical shift anisotropy

HFIP:

Hexafluoroisopropanol

LUV:

Large unilamellar vesicles

MLV:

Multilamellar vesicles

NMR:

Nuclear magnetic resonance

(d)POPC:

sn-1 (deuterated) Palmitoyl, sn-2 oleoyl phosphatidylcholine

POPS:

Palmitoyloleoylphosphatidylserine

REDOR:

Rotational-echo double resonance

SS-NMR:

Solid-state NMR

References

  • Aime S, Bertini I, Luchinat C (1996) Considerations on high resolution solid state NMR in paramagnetic molecules. Coord Chem Rev 150:221–242

    Article  Google Scholar 

  • Ali FE, Barnham KJ, Barrow CJ, Separovic F (2004) Metal catalyzed oxidative damage and oligomerization of the amyloid-β peptide (Aβ) of Alzheimer’s disease. Aust J Chem 57:511–518

    Article  Google Scholar 

  • Alzheimer A (1907) Über eigenartige Erkrankung der Hirinde. Allg Zschr Psychiat U Psychich-gerchtl Med 64:146–148

    Google Scholar 

  • Andrew ER, Bradbury A, Eades RG (1958) Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182:1659

    Article  ADS  Google Scholar 

  • Andrew ER, Bradbury A, Eades RG (1959) Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation. Nature 183:1802–1803

    Article  ADS  Google Scholar 

  • Arispe N, Doh M (2002) Plasma membrane cholesterol controls the cytotoxicity of Alzheimer’s disease AbetaP (1–40) and (1–42) peptides. FASEB J 16:1526–1536

    Article  Google Scholar 

  • Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP, Tanzi RE, Bush AI (2000) Characterization of copper interactions with Alzheimer Aβ peptides: Identification of a attomolar affinity copper binding site on Aβ1–42. J Neurochem 75:1219–1233

    Article  Google Scholar 

  • Balla MS, Bowie JH, Separovic F (2004) Solid-state NMR study of antimicrobial peptides from Australian frogs in phospholipid membranes. Eur Biophys J 33:109–116

    Article  Google Scholar 

  • Brown MF, Seelig J (1978) Influence of cholesterol on the polar region of phosphatidylcholine and phosphatidylethanolamine bilayers. Biochemistry 17:381–384

    Article  Google Scholar 

  • Barnham KJ, Ciccotosto GD, Tickler AK, Ali FE, Smith DG, Williamson NA, Lam YH, Carrington D, Tew D, Kocak G, Volitakis I, Separovic F, Barrow CJ, Wade JD, Masters CL, Cherny RA, Curtain CC, Bush AI, Cappai R (2003) Neurotoxic, redox-competent Alzheimer’s beta-amyloid is released from lipid membrane by methionine oxidation. J Biol Chem 178:42959–42965

    Article  Google Scholar 

  • Barnham KJ, Haeffner F, Ciccotosto GD, Curtain CC, Tew D, Mavros C, Beyreuther K, Carrington D, Masters CL, Cherny RA, Cappai R, Bush AI (2004) Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer’s disease β-amyloid. FASEB J 18:1427–1429

    Google Scholar 

  • Biological Magnetic Resonance Data Bank (2007) The University of Wisconsin, Madison. http://www.bmrb.wisc.edu. Cited 18 Aug 2007

  • Bokvist M, Lindström F, Watts A, Gröbner G (2004) Two types of Alzheimer’s β-amyloid (1–40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation. J Mol Biol 335:1039–1049

    Article  Google Scholar 

  • Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, Yates J, Cotman C, Glabe C (1992) Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem 267:546–554

    Google Scholar 

  • Bush AI (2003) The metallobiology of Alzheimer’s disease. Trends Neurosci 26:207–214

    Article  Google Scholar 

  • Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676

    Article  Google Scholar 

  • Chochina SV, Avdulov NA, Igbavboa U, Cleary JP, O’Hare EO, Wood WG (2001) Amyloid beta-peptide 1–40 increases neuronal membrane fluidity: role of cholesterol and brain region. J Lipid Res 42:1292–1297

    Google Scholar 

  • Choo-Smith LP, Garzon-Rodriguez W, Glabe CG, Surewicz WK (1997) Acceleration of amyloid fibril formation by specific binding of A beta-(1–40) peptide to ganglioside-containing membrane vesicles. J Biol Chem 272:22987–22990

    Article  Google Scholar 

  • Christian H, Simon G, Victor AG, Patrick H, Mallot HA (2007) Soluble beta-amyloid[25–35] reversibly impairs hippocampal synaptic plasticity and spatial learning. Eur J Pharmacol 561:85–90

    Article  Google Scholar 

  • Coles M, Bicknell W, Watson AA, Fairlie DP, Craik DJ (1998) Solution structure of amyloid beta-peptide(1–40) in a water-micelle environment. Is the membrane-spanning domain where we think it is? Biochemistry 37:11064–11077

    Article  Google Scholar 

  • Cornell BA, Hiller RG, Raison J, Separovic F, Smith R, Vary JC, Morris C (1983) Biological membranes are rich in low frequency motion. Biochim Biophys Acta 732:473–478

    Article  Google Scholar 

  • Cornell BA, Weir LE, Separovic F (1988) The effect of gramicidin A on phospholipid bilayers. Eur Biophys J 16:113–119

    Google Scholar 

  • Curtain CC, Separovic F, Rivett D, Kirkpatrick A, Waring AJ, Gordon LM, Azad AA (1994) The amino-terminal region of the HIV-1 Nef protein is fusogenic. AIDS Res Hum Retroviruses 10:1231–1240

    Article  Google Scholar 

  • Demeester N, Baier G, Enzinger C, Goethals M, Vandekerckhove J, Rosseneu M, Labeur C (2000) Apoptosis induced in neuronal cells by C-terminal amyloid β-fragments is correlated with their aggregation properties in phospholipid membranes. Mol Membr Biol 17:219–228

    Article  Google Scholar 

  • de Planque MRR, Rijkers DTS, Fletcher J, Liskamp RMJ, Separovic F (2004) The αM1 segment of the nicotinic acetylcholine receptor exhibits conformational flexibility in a membrane environment. Biochim Biophys Acta 1665:40–47

    Article  Google Scholar 

  • Donnelly PS, Xiao Z, Wedd AG (2007) Copper and Alzheimer’s disease. Curr Opin Chem Biol 11:128–133

    Article  Google Scholar 

  • Dufourc EJ, Mayer C, Stohrer J, Althoff G, Kothe G (1992) Dynamics of phosphate head groups in biomembranes. Comprehensive analysis using phosphorus-31 nuclear magnetic resonance lineshape and relaxation time measurements. Biophys J 61:42–57

    Google Scholar 

  • Fassbender K, Masters C, Beyreuther K (2001) Alzheimer’s disease: molecular concepts and therapeutic targets. Naturwissenschaften 88:261–267

    Article  ADS  Google Scholar 

  • Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101

    Article  ADS  Google Scholar 

  • Gehman JD, Separovic F (2006) Solid-State NMR of Membrane-Active Proteins and Peptides. In: Webb GA (ed) Modern magnetic resonance. Springer, Heidelberg, pp 301–307

    Chapter  Google Scholar 

  • Gehman JD, Separovic F, Lu K, Mehta AK (2007) Boltzmann statistics rotational-echo double-resonance analysis. J Phys Chem B 111:7802–7811

    Article  Google Scholar 

  • Glenner GG, Wong CW (1984) Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    Article  Google Scholar 

  • Griffin RG, Powers L, Pershan PS (1978) Head-group conformation in phospholipids: a phosphorus-31 nuclear magnetic resonance study of oriented monodomain dipalmitoylphosphatidylcholine bilayers. Biochemistry 17:2718–2722

    Article  Google Scholar 

  • Harper JD, Lansbury PT Jr (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66:385–407

    Article  Google Scholar 

  • Hartley DM, Walsh DM, Ye CP, Diehl T, Vasquez S, Vassilev PM, Teplow DB, Selkoe DJ (1999) Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 19:8876–8884

    Google Scholar 

  • Hartzell CJ, Whitfield M, Oas TG, Drobny GP (1987) Determination of the 15N and 13C chemical shift tensors of L-[13C]alanyl-L-[15N]alanine from the dipole-coupled powder patterns. J Am Chem Soc 109:5966–5969

    Article  Google Scholar 

  • Herzfeld J, Griffin RG, Haberkorn RA (1978) Phosphorus-31 chemical-shift tensors in barium diethyl phosphate and urea-phosphoric acid: model compounds for phospholipid head-group studies. Biochemistry 17:2711–2718

    Article  Google Scholar 

  • Herzfeld J, Berger AE (1980) Sideband intensities in NMR spectra of samples spinning at the magic angle. J Chem Phys 73:6021–6030

    Article  ADS  Google Scholar 

  • Jick J, Zornberg GL, Jick SS, Seshadri S, Drachman DA (2000) Statins and the risk of dementia. Lancet 356:1627–1631

    Article  Google Scholar 

  • Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736

    Article  ADS  Google Scholar 

  • Kanski J, Varadarajan S, Aksenova M, Butterfield DA (2001) Role of glycine-33 and methionine-35 in Alzheimer’s amyloid β-peptide 1–42-associated oxidative stress and neurotoxicity. Biochim Biophys Acta 1586:190–198

    Google Scholar 

  • Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  ADS  Google Scholar 

  • Kohler SJ, Klein MP (1976) 31P nuclear magnetic resonance chemical shielding tensors of phosphorylethanolamine, lecithin, and related compounds: applications to head-group motion in model membranes. Biochemistry 15:967–974

    Article  Google Scholar 

  • Kohler SJ, Klein MP (1977) Orientation and dynamics of phospholipid head groups in bilayers and membranes determined from 31P nuclear magnetic resonance chemical shielding tensors. Biochemistry 16:519–526

    Article  Google Scholar 

  • Kurland RJ, McGarvey BR (1970) Isotropic NMR shifts in transition metal complexes: the calculation of the Fermi contact and pseudocontact terms. J Magn Reson 2:286–301

    Google Scholar 

  • Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453

    Article  ADS  Google Scholar 

  • Lau T-L, Barnham KJ, Curtain CC, Masters CL, Separovic F (2003) Magnetic resonance studies of the β-amyloid peptide. Aust J Chem 56:349–356

    Article  Google Scholar 

  • Lau T-L, Ambroggio EE, Tew DJ, Cappai R, Masters CL, Fidelio GD, Barnham KJ, Separovic F (2006) Amyloid-β peptide disruption of lipid membranes and the effect of metal ions. J Mol Biol 356:759–770

    Article  Google Scholar 

  • Lau T-L, Gehman JD, Wade JD, Masters CL, Barnham KJ, Separovic F (2007a) Cholesterol and Clioquinol modulation of Aβ(1–42) interaction with phospholipids bilayers and metals. Biochim Biophys Acta 1768:2400–2408

    Article  Google Scholar 

  • Lau T-L, Gehman JD, Wade JD, Perez K, Masters CL, Barnham KJ, Separovic F (2007b) Membrane interactions and the effect of metal ions of the amyloidogenic fragment Aβ(25–35) in comparison to Aβ(1–42). Biochim Biophys Acta 1768:2400–2408

    Article  Google Scholar 

  • Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440:352–357

    Article  ADS  Google Scholar 

  • Lowe IJ (1959) Free induction decays of rotating solids. Phys Rev Lett 2:285–287

    Article  ADS  Google Scholar 

  • Maricq MM, Waugh JS (1979) NMR in rotating solids. J Chem Phys 70:3300–3316

    Article  ADS  Google Scholar 

  • Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and down syndrome. Proc Natl Acad Sci 82:4245–4249

    Article  ADS  Google Scholar 

  • McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866

    Article  Google Scholar 

  • Mehring M (1983) Principles of high resolution NMR in solids. Springer, Heidelberg

    Google Scholar 

  • Oas TG, Hartzell CJ, McMahon TJ, Drobny GP, Dahlquist FW (1987) The carbonyl 13C chemical shift tensors of five peptides determined from 15N dipole-coupled chemical shift powder patterns. J Am Chem Soc 109:5956–5962

    Article  Google Scholar 

  • Pake GE (1948) Nuclear resonance absorption in hydrated crystals: fine structure of the proton line. J Chem Phys 16:327–336

    Article  ADS  Google Scholar 

  • Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99:16742–16747

    Article  ADS  Google Scholar 

  • Roher AE, Lowenson JD, Clarke S, Woods AS, Cotter RJ, Gowing E, Ball MJ (1993) β-Amyloid-(1–42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc Natl Acad Sci USA 90:10836–10840

    Article  ADS  Google Scholar 

  • Saitô H (1983) Conformation-dependent 13C chemical shifts: a new means of conformational characterization as obtained by high-resolution solid-state NMR. Magn Reson Chem 24:835–852

    Article  Google Scholar 

  • Saitô H, Tuzi S, Yamaguchi S, Kimura S, Tanio M, Kamihira M, Nishimura K, Naito A (1998) Conformation and dynamics of membrane proteins and biologically active peptides as studied by high-resolution 13C NMR. J Mol Struct 441:137–148

    Article  ADS  Google Scholar 

  • Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid-state NMR and polymers. Academic Press, San Diego

    Google Scholar 

  • Seelig J, Gally H (1976) Investigation of phosphatidylethanolamine bilayers by deuterium and phosphorus-31 nuclear magnetic resonance. Biochemistry 15:5199–5204

    Article  Google Scholar 

  • Separovic F, Smith R, Yannoni CS, Cornell BA (1990) Molecular sequence effect on the 13C carbonyl chemical shift shielding tensor. J Am Chem Soc 112:8324–8328

    Article  Google Scholar 

  • Separovic F, Cornell B, Pace R (2000) Orientation dependence of NMR relaxation time, T, in lipid bilayers. Chem Phys Lipids 107:159–167

    Article  Google Scholar 

  • Separovic F, Drechsler A, Lau T-L (2004) Magnetic moments: membrane protein structures by NMR. Chem Aust 71(1):4–7

    Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  ADS  Google Scholar 

  • Sisodia SS (1992) β-Amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci USA 89:6075–6079

    Article  ADS  Google Scholar 

  • Smith DP, Smith DG, Curtain CC, Boas JF, Pilbrow JR, Ciccotosto GD, Lau T-L, Tew DJ, Perez K, Wade JD, Bush AI, Drew SC, Separovic F, Masters CL, Cappai R, Barnham KJ (2006) Copper-mediated amyloid-β toxicity is associated with an intermolecular histidine bridge. J Biol Chem 281:15145–15154

    Article  Google Scholar 

  • Smith DG, Cappai R, Barnham KJ (2007) The redox chemistry of the Alzheimer’s disease amyloid beta peptide. Biochim Biophys Acta 1768:1976–1990

    Article  Google Scholar 

  • Sparks DL, Hunsaker JC, Scheff SW, Kryscio RJ, Henson JL, Markesbery WR (1990) Cortical senile plaques in coronary artery disease, aging and Alzheimer’s disease. Neurobiol Aging 11:601–607

    Article  Google Scholar 

  • Stark RE, Jelinski LW, Ruben DJ, Torchia DA, Griffin RG (1983) 13C chemical shift and 13C-15N dipolar tensors for the peptide bond: [1–13C]glycyl[15N]glycine·HCl·H2O. J Magn Reson 55:266–273

    Google Scholar 

  • Stejskal EO, Schaefer J, Waugh JS (1977) Magic-angle spinning and polarization transfer in proton-enhanced NMR. J Magn Reson 28:105–112

    Google Scholar 

  • Stockton GW, Smith IC (1976) A deuterium nuclear magnetic resonance study of the condensing effect of cholesterol on egg phosphatidylcholine bilayer membranes. I. Perdeuterated fatty acid probes. Chem Phys Lipids 17:251–263

    Article  Google Scholar 

  • Subasinghe S, Unabia S, Barrow CJ, Mok SS, Aguilar MI, Small DH (2003) Cholesterol is necessary both for the toxic effect of Abeta peptides on vascular smooth muscle cells and for Abeta binding to vascular smooth muscle cell membranes. J Neurochem 84:471–479

    Article  Google Scholar 

  • Suckling KE, Boyd GS (1976) Interactions of the cholesterol side-chain with egg lecithin. A spin label study. Biochim Biophys Acta 436:295–300

    Article  Google Scholar 

  • Tickler AK, Wade JD, Separovic F (2005) The role of A beta peptides in Alzheimer’s disease. Protein Peptide Lett 12:513–519

    Article  Google Scholar 

  • Varadarajan S, Kanski J, Aksenova M, Lauderback C, Butterfield DA (2001) Different mechanisms of oxidative stress and neurotoxicity for Alzheimer’s A beta(1–42) and A beta(25–35). J Am Chem Soc 123:5625–5631

    Article  Google Scholar 

  • Watwe RM, Bellare JR (1995) Manufacture of liposomes—a review. Curr Sci 68:715–724

    Google Scholar 

  • Yeagle PL, Hutton WC, Huang CH, Martin RB (1975) Headgroup conformation and lipid- cholesterol association in phosphatidylcholine vesicles: a 31P{1H} nuclear Overhauser effect study. Proc. Natl Acad Sci USA 72:3477–3481

    Article  ADS  Google Scholar 

  • Yeagle PL, Hutton WC, Huang CH, Martin RB (1977) Phospholipid head-group conformations; intermolecular interactions and cholesterol effects. Biochemistry 16:4344–4349

    Article  Google Scholar 

  • Zhang Y, McLaughlin R, Goodyer C, LeBlanc A (2002) Selective cytotoxicity of intracellular amyloid β peptide1–42 through p53 and Bax in cultured primary human neurons. J Cell Biol 156:519–529

    Article  Google Scholar 

Download references

Acknowledgments

The Australian Research Council is gratefully acknowledged for financial support by award of an ARC Discovery grant to FS and JDW. We thank John Hanna for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances Separovic.

Additional information

Australian Society for Biophysics Special Issue: Metals and Membranes in Neuroscience.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gehman, J.D., O’Brien, C.C., Shabanpoor, F. et al. Metal effects on the membrane interactions of amyloid-β peptides. Eur Biophys J 37, 333–344 (2008). https://doi.org/10.1007/s00249-007-0251-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0251-2

Keywords

Navigation