Skip to main content
Log in

Solid-state NMR study of antimicrobial peptides from Australian frogs in phospholipid membranes

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Antimicrobial peptides, isolated from the dorsal glands of Australian tree frogs, possess a wide spectrum of biological activity and some are specific to certain pathogens. These peptides have the capability of disrupting bacterial membranes and lysing lipid bilayers. This study focused on the following amphibian peptides: (1) aurein 1.2, a 13-residue peptide; (2) citropin 1.1, with 16 residues; and (3) maculatin 1.1, with 21 residues. The antibiotic activity and structure of these peptides have been studied and compared and possible mechanisms by which the peptides lyse bacterial membrane cells have been proposed. The peptides adopt amphipathic α-helical structures in the presence of lipid micelles and vesicles. Specifically 15N-labelled peptides were studied using solid-state NMR to determine their structure and orientation in model lipid bilayers. The effect of these peptides on phospholipid membranes was determined by 2H and 31P solid-state NMR techniques in order to understand the mechanisms by which they exert their biological effects that lead to the disruption of the bacterial cell membrane. Aurein 1.2 and citropin 1.1 are too short to span the membrane bilayer while the longer maculatin 1.1, which may be flexible due to the central proline, would be able to span the bilayer as a transmembrane α-helix. All three peptides had a peripheral interaction with phosphatidylcholine bilayers and appear to be located in the aqueous region of the membrane bilayer. It is proposed that these antimicrobial peptides have a "detergent"-like mechanism of membrane lysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Agerberth B, Gunne H, Odedberg J, Kogner P, Boman HG, Gudmundsson GH (1995) FALL-30, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci USA 92:195–199

    CAS  PubMed  Google Scholar 

  • Bechinger B, Kim Y, Chirlain L, Gesell J, Neumann J-M, Montal M, Tomich J, Zasloff M, Opella S (1991) Orientations of amphipathic helical peptides in membrane bilayers determined by solid-state NMR spectroscopy. J Biomol NMR 1:167–173

    CAS  PubMed  Google Scholar 

  • Bechinger B, Zasloff M, Opella S (1998) Structure and dynamics of the antibiotic peptide PGLa in membranes by solution and solid-state nuclear magnetic resonance spectroscopy. Biophys J 74:981–987

    CAS  PubMed  Google Scholar 

  • Boman H (1991) Antibacterial peptides: key components needed in immunity. Cell 65:205–207

    CAS  PubMed  Google Scholar 

  • Bonev B, Chan W, Bycroft B, Roberts G, Watts A (2000) Interaction of the lantibiotic nisin with mixed lipid bilayers: a 31P and 2H NMR study. Biochemistry 39:11425–11433

    Article  CAS  PubMed  Google Scholar 

  • Brock TK (1974) Biology of microorganisms. Prentice-Hall, Englewood Cliffs, NJ, USA

  • Chia B, Carver J, Mulhern T, Bowie J (2000a) Maculatin 1.1, an antimicrobial peptide from the Australian tree frog, Litoria genimaculata: solution structure and biological activity. Eur J Biochem 267:1894–1908

    Article  CAS  PubMed  Google Scholar 

  • Chia BCS, Lam Y-H, Dyall-Smith M, Separovic F, Bowie JH (2000b) A 31P NMR study of the interaction of amphibian antimicrobial peptides with the membranes of live bacteria. Lett Pept Sci 7:151–156

    Article  CAS  Google Scholar 

  • Cornell B, Separovic F, Baldassi A, Smith R (1988) Conformation and orientation of gramicidin A in oriented phospholipid bilayers measured by solid-state carbon-13 NMR. Biophys J 53:67–76

    CAS  Google Scholar 

  • Cross T (1997) Solid-state nuclear magnetic resonance characterization of gramicidin channel structure. Methods Enzymol 289:672–696

    CAS  PubMed  Google Scholar 

  • de Planque MRR, Greathouse DV, Koeppe RE II, Schafer H, Marsh D, Killian A (1998) Influence of lipid/peptide hydrophobic mismatch on the thickness of diacyl-phosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane α-helical peptides and gramicidin A. Biochemistry 37:9333–9345

    Article  PubMed  Google Scholar 

  • Duclohier H, Wroblewski H (2001) Voltage-dependent pore formation and anti-microbial activity by alamethicin and analogues. J Membr Biol 184:1–12

    Article  CAS  PubMed  Google Scholar 

  • Ehrenstein G, Lecar Q (1977) Electrically gated ionic channels in lipid bilayers. Rev Biophys 10:1–34

    CAS  Google Scholar 

  • Gawrisch K, Barry J, Holte L, Sinnwell T, Bergelson L, Ferretti J (1995) Role of interactions at the lipid-water interface for domain formation. Mol Membr Biol 12:83–88

    CAS  PubMed  Google Scholar 

  • Gudmundsson G, Agerbeth B, Odedberg J, Bergman T, Olsson B, Salcedo R (1996) The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem 238:325–332

    CAS  PubMed  Google Scholar 

  • Habermann E, Jentsch J (1967) Sequenz analyse des melittins aus den tryptischen und peptischen spaltstucken. Hoppe-Seyler's Z Physiol Chem 348:37–50

  • Harzer U, Bechinger B (2000) Alignment of lysine-anchored membrane peptides under conditions of hydrophobic mismatch: a CD, 15N and 31P solid-state NMR spectroscopy investigation. Biochemistry 39:13106–13114

    Article  CAS  PubMed  Google Scholar 

  • He K, Ludtke S, Heller W, Huang H (1996) Mechanism of alamethicin insertion into lipid bilayers. Biophys J 71:2669–2679

    CAS  PubMed  Google Scholar 

  • Hoffman W, Richter K, Kreil G (1983) A novel peptide designated PYLa and its precursor as predicted from cloned mRNA of Xenopus laevis skin. EMBO J 2:711–714

    PubMed  Google Scholar 

  • Hong M, Yao XL, Jakes K, Huster D (2002) Investigation of molecular motions by Lee-Goldburg cross-polarization NMR spectroscopy. J Phys Chem B 106:7355–7364

    Article  CAS  Google Scholar 

  • Jacob L, Zasloff M (1994) Potential therapeutic applications of magainins and other antimicrobial agents of animal origin. Ciba Found Symp 186:197–216

    CAS  PubMed  Google Scholar 

  • Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerrberth B (1998) Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 273:3718–3724

    CAS  PubMed  Google Scholar 

  • Mansfield P (1965) Multiple-pulse nuclear magnetic resonance transients in solids. Phys Rev 137:961–974

    Article  CAS  Google Scholar 

  • Marassi F, Ramamoorthy A, Opella S (1997) Complete resolution of the solid-state NMR spectrum of a uniformly 15N-labeled membrane protein in phospholipid bilayers. Proc Natl Acad Sci USA 94:8551–8556

    Article  CAS  PubMed  Google Scholar 

  • Marassi F, Opella S, Juvvadi P, Merrifield R (1999) Orientations of cecropin A helices in phospholipid bilayers determined by solid-state NMR spectroscopy. Biophys J 77:3152–3155

    CAS  PubMed  Google Scholar 

  • Marcotte I, Wegener K, Lam Y-H, Chia B, de Planque M, Bowie J, Auger M, Separovic F (2003) Interaction of antimicrobial peptides from Australian amphibians with lipid membranes. Chem Phys Lipids 122:107–120

    Article  CAS  PubMed  Google Scholar 

  • Nagle J, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469:159–195

    Article  CAS  PubMed  Google Scholar 

  • Oren Z, Hong J, Shai Y (1999) Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell selective activity. Eur J Biochem 341:501–513

    Article  CAS  Google Scholar 

  • Oren Z, Ramesh J, Avrahami D, Suryaprakash N, Shai Y, Jelinek R (2002) Structures and mode of membrane interaction of a short alpha helical lytic peptide and its diastereomer determined by NMR, FTIR and fluorescence spectroscopy. Eur J Biochem 269:3869–3880

    Article  CAS  PubMed  Google Scholar 

  • Pines A, Gibby M, Waugh J (1973) Proton enhanced NMR of dilute spins in solids. J Chem Phys 59:569–590

    CAS  Google Scholar 

  • Rozek T, Wegener K, Bowie J, Oliver I, Carver J, Wallace J, Tyler M (2000) The antibiotic and anticancer active aurein peptides from the Australian bell frogs Litoria aurea and Litoria rainformis: the solution structure of aurein 1.2. Eur J Biochem 267:5330–5341

    Article  CAS  PubMed  Google Scholar 

  • Seelig J (1977) Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys 10:353–415

    CAS  PubMed  Google Scholar 

  • Seelig J, Seelig A (1974) The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry 13:4839–4845

    CAS  PubMed  Google Scholar 

  • Separovic F, Gawrisch K (1996) Effect of unsaturation on the chain order of phosphatidylcholines in a dioleoylphophatidylethanolamine matrix. Biophys J 71:274–282

    CAS  PubMed  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70

    CAS  PubMed  Google Scholar 

  • Shai Y, Oren Z (2001) From 'carpet' mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22:1629–1641

    Article  CAS  PubMed  Google Scholar 

  • Shoji A, Ozaki T, Fujito T, Deguchi K, Ando I (1987) High-resolution 15N NMR study of solid homopolypeptides by the CP MAS method: conformation-dependent 15N chemical shift characteristics of the α-helix and β-sheet forms. Macromolecules 20:2441–2445

    CAS  Google Scholar 

  • Shoji A, Ozaki T, Fujito T, Deguchi K, Ando S, Ando I (1989) Nitrogen-15 NMR chemical shift tensors and conformation of some nitrogen-15-labeled polypeptides in the solid state. Macromolecules 22:2860–2863

    CAS  Google Scholar 

  • Shoji A, Ozaki T, Fujito T, Deguchi K, Ando S, Ando I (1990) 15N chemical shift tensors and conformation of solid polypeptides containing 15N-labeled L-alanine residues by 15N NMR. 2. Secondary structure reflection in σ22. J Am Chem Soc 112:4693–4697

    CAS  Google Scholar 

  • Smith R, Separovic F, Milne T, Whittaker A, Bennett F, Cornell B, Makriyannis A (1994) Structure and orientation of the pore-forming peptide, melittin, in lipid bilayers. J Mol Biol 241:456–466

    CAS  PubMed  Google Scholar 

  • Steinborner S, Currie G, Bowie J, Wallace J, Tyler M (1998) New caerin peptides from the skin glands of the Australian tree frog Litoria chloris. A comparison of the antibiotic activity of maculatin 1.1 and caerin 1.1. J Pept Res 51:121–126

    CAS  PubMed  Google Scholar 

  • Stone D, Waugh R, Bowie J, Wallace J, Tyler M (1992a) The structure of caerin 1.1, a novel antibiotic from Australian tree frogs. J Chem Soc Chem Commun 1224–1225

  • Stone D, Waugh R, Bowie J, Wallace J, Tyler M (1992b) Peptides from Australian frogs. Structures of the caerins and caeridin 1 from Litoria splendida. J Chem Soc Perkin Trans 1:3173–3178

  • Wegener K, Wabnitz P, Carver J, Bowie J, Chia B, Wallace J, Tyler M (1999) Host defence peptides from the skin glands of the Australian Blue Mountains tree-frog Litoria citropa. The antibacterial citropin 1 peptides. The solution structure of citropin 1.1. Eur J Biochem 265:627–637

    Article  CAS  PubMed  Google Scholar 

  • Wong H, Bowie J, Carver J (1997) The solution structure and activity of caerin 1.1, an antimicrobial peptide from the Australian green frog, Litoria splendida. Eur J Biochem 247:545–557

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.S.B. is grateful to the University of Melbourne for award of an MRS scholarship. J.H.B. and F.S. are grateful to the ARC for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Separovic.

Additional information

This paper was submitted as a record of the 2002 Australian Biophysical Society

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balla, M.S., Bowie, J.H. & Separovic, F. Solid-state NMR study of antimicrobial peptides from Australian frogs in phospholipid membranes. Eur Biophys J 33, 109–116 (2004). https://doi.org/10.1007/s00249-003-0342-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0342-7

Keywords

Navigation