Skip to main content
Log in

A molecular dynamics study of the bee venom melittin in aqueous solution, in methanol, and inserted in a phospholipid bilayer

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The structural properties of melittin, a small amphipathic peptide found in the bee venom, are investigated in three different environments by molecular dynamics simulation. Long simulations have been performed for monomeric melittin solvated in water, in methanol, and shorter ones for melittin inserted in a dimyristoylphosphatidylcholine bilayer. The resulting trajectories were analysed in terms of structural properties of the peptide and compared to the available NMR data. While in water and methanol solution melittin is observed to partly unfold, the peptide retains its structure when embedded in a lipid bilayer. The latter simulation shows good agreement with the experimentally derived 3J-coupling constants. Generally, it appears that higher the stability of the helical conformation of melittin, lower is the dielectric permittivity of the environment. In addition, peptide-lipid interactions were investigated showing that the C-terminus of the peptide provides an anchor to the lipid bilayer by forming hydrogen bonds with the lipid head groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zasloff M (1992) Antibiotic peptides as mediators of innate immunity. Curr Opin Immunol 4:3–7

    Article  PubMed  Google Scholar 

  2. Bernheimer AW, Rudy B (1986) Interactions between membranes and cytolytic peptides. Biochim Biophys Acta 864:123–141

    PubMed  Google Scholar 

  3. White SH, Wimley WC, Selsted ME (1995) Structure, function, and membrane integration of defensins. Curr Opin Struct Biol 5:521–527

    Article  PubMed  Google Scholar 

  4. Bechinger B (1997) Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J Membrane Biol 156:197–211

    Article  Google Scholar 

  5. Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, α-helical antimicrobial peptides. Biopolymers 55:4–30

    Article  PubMed  Google Scholar 

  6. Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues. Biochemistry 31:12416–12423

    Article  PubMed  Google Scholar 

  7. Oren Z, Shai Y (1998) Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers 47:451–463

    Article  PubMed  Google Scholar 

  8. Christensen B, Fink J, Merrifield RB, Mauzerall D (1988) Channel-forming peptides of cecropins and related model compounds incorporated into planar lipid-membranes. Proc Natl Acad Sci USA 85:5072–5076

    Article  PubMed  ADS  Google Scholar 

  9. Ludtke S, He K, Huang HW (1995) Membrane thinning caused by magainin 2. Biochemistry 34:16764–16769

    Article  PubMed  Google Scholar 

  10. Matsuzaki K, Murase O, Fujii N, Miyajima K (1995) Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry 34:6521–6526

    Article  PubMed  Google Scholar 

  11. Biggin PC, Sansom MSP (1999) Interactions of α-helices with lipid bilayers: a review of simulation studies. Biophys Chem 76:161–183

    Article  PubMed  Google Scholar 

  12. Ladokhin AS, White SH (2001) “detergent-like” permeabilization of anionic lipid vesicles by melittin. Biochim Biophys Acta 1514:253–260

    Article  PubMed  Google Scholar 

  13. Habermann E (1972) Bee and wasp venoms. Science 177:314–322

    Article  PubMed  ADS  Google Scholar 

  14. Yunes R, Goldhammer AR, Garner WK, Cordes EH (1977) Phospholipases–melittin facilitation of bee venom phospholipase A2 catalyzed hydrolysis of unsonicated lecithin liposomes. Arch Biochem Biophys 183:105–112

    Article  PubMed  Google Scholar 

  15. Shier WT (1979) Activation of high levels of endogenous phospholipase A2 in cultured cells. Proc Natl Acad Sci USA 76:195–199

    Article  PubMed  ADS  MathSciNet  Google Scholar 

  16. Morgan CG, Williamson H, Fuller S, Hudson B (1983) Melittin induces fusion of unilamellar phospholipid-vesicles. Biochim Biophys Acta 732:668–674

    Article  PubMed  Google Scholar 

  17. Habermann E, Jentsch J (1967) Sequenzanalyse des Melittin aus den tryptischen und peptischen Spaltstücken. H- S Z Physiol Chem 348:37–50

    Google Scholar 

  18. Terwilliger TC, Eisenberg D (1982) The structure of melittin. I. Structure determination and partial refinement. J Biol Chem 257:6010–6015

    PubMed  Google Scholar 

  19. Bazzo R, Tappin MJ, Pastore A, Harvey TS, Carver JA, Campbell ID (1988) The structure of melittin—a 1H-NMR study in methanol. Eur J Biochem 173:139–146

    Article  PubMed  Google Scholar 

  20. Inagaki F, Shimada I, Kawaguvhi K, Hirano M, Terasawa I, Ikura T, Gō N (1989) Structure of melittin bound to perdeuterated dodecylphosphocholine micelles as studied by two-dimensional NMR and distance geometry calculations. Biochemistry 28:5985–5991

    Article  Google Scholar 

  21. Ikura T, Gō N, Inagaki F (1991) Refined structure of melittin bound to perdeuterated dodecylphosphocholine micelles as studied by 2D-NMR and distance geometry calculation. Proteins: Struct Funct Genet 9:81–89

    Article  Google Scholar 

  22. Brown LR, Wüthrich K (1981) Melittin bound to dodecylphosphocholine micelles—1H-NMR assignments and global conformational features. Biochim Biophys Acta 647:95–111

    Article  PubMed  Google Scholar 

  23. Brown LR, Braun W, Kumar A, Wüthrich K (1981) High resolution nuclear magnetic resonance studies of the conformation and orientation of melittin bound to a lipid-water interface. Biophys J 37:319–328

    Google Scholar 

  24. Dempsey CE (1988) pH-Dependence of hydrogen-exchange from backbone peptide amides of melittin in methanol. Biochemistry 27:6893–6901

    Article  Google Scholar 

  25. Terwilliger TC, Weissman L, Eisenberg D (1981) The structure of melittin in the form I crystals and its implication for melittin’s lytic and surface activities. Biophys J 37:353–361

    Google Scholar 

  26. Lauterwein J, Brown LR, Wüthrich K (1980) High-resolution 1H-NMR studies of monomeric melittin in aqueous solution. Biochim Biophys Acta 622:219–230

    PubMed  Google Scholar 

  27. Brown LR, Lauterwein J, Wüthrich K (1980) High-resolution 1H-NMR studies of self-aggregation of melittin in aqueous solution. Biochim Biophys Acta 622:231–244

    PubMed  Google Scholar 

  28. Vogel H, Jähnig F (1986) The structure of melittin in membranes. Biophys J 50:573–582

    PubMed  Google Scholar 

  29. Vogel H (1987) Comparison of the conformation and orientation of alamethicin and melittin in lipid membranes. Biochemistry 26:4562–4572

    Article  PubMed  Google Scholar 

  30. Stanislawski B, Rüterjans H (1987) 13C-NMR Investigation of the insertion of the bee venom melittin into lecithin vesicles. Eur Biophys J 15:1–12

    Article  Google Scholar 

  31. Altenbach C, Froncisz W, Hyde JS, Hubbell WL (1989) Conformation of spin-labeled melittin at the membrane surfaces investigated by pulse saturation recovery and continuous wave power saturation electron paramagnetic resonance. Biophys J 56:1183–1191

    PubMed  Google Scholar 

  32. Kuchinka E, Seelig J (1989) Interaction of melittin with phosphatidylcholine membranes. Binding isotherm and lipid head-group conformation. Biochemistry 28:4216–4221

    Article  PubMed  Google Scholar 

  33. Beschiaschvili G, Seelig J (1990) Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes. Biochemistry 29:52–58

    Article  PubMed  Google Scholar 

  34. Frey S, Tamm LK (1991) Orientation of melittin in phospholipid bilayers—a polarized attenuated total reflection infrared study. Biophys J 60:922–930

    Article  PubMed  Google Scholar 

  35. Werkmeister JA, Kirkpatrick A, McKenzie JA, Rivett DE (1993) The effect of sequence variations and structure on the cytolytic activity of melittin peptides. Biochim Biophys Acta 1157:50–54

    PubMed  Google Scholar 

  36. Rex S (1996) Pore formation induced by the peptide melittin in different lipid vesicle membranes. Biophys Chem 58:75–85

    Article  PubMed  Google Scholar 

  37. Rex S (2000) A Pro → Ala substitution in melittin affects self association, membrane binding and pore-formation kinetics due to changes in structural and electrostatics properties. Biophys Chem 85:209–228

    Article  PubMed  Google Scholar 

  38. Hristova K, Dempsey CE, White SH (2001) Structure, location, and lipid perturbations of melittin at the membrane interface. Biophys J 80:801–811

    PubMed  Google Scholar 

  39. Lee M-T, Fang-Yu C, Huang H-W (2004) Energetics of pore formation induced by membrane active peptides. Biochemistry 43:3590–3599

    Article  PubMed  Google Scholar 

  40. Dempsey CE (1990) The actions of melittin in membranes. Biochim Biophys Acta 1031:143–161

    PubMed  Google Scholar 

  41. La Rocca P, Biggin PC, Tieleman DP, Sansom MSP (1999) Simulation studies of the interaction of antimicrobial peptides and lipid bilayers. Biochim Biophys Acta 1462:185–200

    Article  PubMed  Google Scholar 

  42. Sessions RB, Gibbs N, Dempsey CE (1998) Hydrogen bonding in helical polypeptides from molecular dynamics simulations and amide hydrogen exchange analysis: alamethicin and melittin in methanol. Biophys J 74:138–152

    PubMed  Google Scholar 

  43. Liu H-L, Hsu C-M (2004) The effects of solvent and temperature on the structural integrity of monomeric melittin by molecular dynamics simulations. Chem Phys Lett 375:119–125

    Article  ADS  Google Scholar 

  44. Roccatano D, Colombo G, Fioroni M, Mark AE (2002) Mechanism by which 2,2,2-trifluorethanol/water mixtures stabilize secondary-structure formation in peptides: a molecular dynamics study. Proc Natl Acad Sci 99:12179–12184

    Article  PubMed  ADS  Google Scholar 

  45. Gerig JT (2004) Structure and solvation of melittin in 1,1,1,3,3,3-hexafluoro-2-propanol. Biophys J 86:3166–3175

    PubMed  Google Scholar 

  46. Bernèche S, Nina M, Roux B (1998) Molecular dynamics simulation of melittin in dimyristoylphosphatidylcholine bilayer membrane. Biophys J 75:1603–1618

    PubMed  Google Scholar 

  47. Bachar M, Becker OM (1999) Melittin at a membrane/water interface: Effects on water orientation and water penetration. J Chem Phys 111:8672–8685

    Article  ADS  Google Scholar 

  48. Lin J-H, Baumgärtner A (2000) Molecular dynamics simulations of hydrophobic and amphipathic proteins interacting with a lipid bilayer membrane. Comp Theor Pol Sci 10:97–102

    Article  Google Scholar 

  49. Lin J-H, Baumgärtner A (2000) Adsorption of melittin to a lipid bilayer: A molecular dynamics study. J Mol Liq 84:89–98

    Article  Google Scholar 

  50. Bachar M, Becker OM (2000) Protein-induced membrane disorder: a molecular dynamics study of melittin in a dipalmitoylphosphatidylcholine bilayer. Biophys J 78:1359–1375

    PubMed  Google Scholar 

  51. Lin J-H, Baumgärtner A (2000) Stability of a melittin pore in a lipid bilayer: a molecular dynamics study. Biophys J 78:1714–1724

    PubMed  Google Scholar 

  52. van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular Simulation: The GROMOS96 Manual and User Guide. vdf Hochschulverlag, ETH Zürich, Switzerland

    Google Scholar 

  53. Scott WRP, Hünenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Krüger P, van Gunsteren WF (1999) The GROMOS biomolecular simulation program package. J Phys Chem 103:3596–3607

    Google Scholar 

  54. Schuler LD, Daura X, van Gunsteren WF (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem 22:1205–1218

    Article  Google Scholar 

  55. Chandrasekhar I, Kastenholz M, Lins RD, Oostenbrink C, Schuler LD, Tieleman DP, van Gunsteren WF (2003) A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS 45A3 force field. Eur Biophys J 32:67–77

    PubMed  Google Scholar 

  56. Chiu SW, Clark M, Subramaniam S, Scott HL, Jakobsson E (1995) Incorporation of surface tension into molecular dynamics simulation of an interface: A fluid phase lipid bilayer membrane. Biophys J 69:1230–1245

    PubMed  Google Scholar 

  57. Terwilliger TC, Eisenberg D (1982) The structure of melittin. II. Interpretation of the structure. J Biol Chem 257:6016–6022

    PubMed  Google Scholar 

  58. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, pp 331

    Google Scholar 

  59. Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 94(3):435

    Google Scholar 

  60. Yau WM, Wimley WC, Gawrisch K, White SH (1998) The preference of tryptophan for membrane interfaces. Biochemistry 37:14713–14718

    Article  PubMed  Google Scholar 

  61. Vogel H, Jähnig F, Hoffmann V, Stümpel J (1983) The orientation of melittin in lipid membranes. Biochim Biophys Acta 733:201–209

    Article  PubMed  Google Scholar 

  62. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  ADS  Google Scholar 

  63. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  ADS  Google Scholar 

  64. Christopher JA, Swanson R, Baldwin TO (1996) Algorithms for finding the axis of a helix: fast rotational and parametric least-squares methods. Computers Chem 20:339–345

    Article  Google Scholar 

  65. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen bonded and geometrical features. Biopolymers 22:2577–2637

    Article  PubMed  Google Scholar 

  66. Karplus M (1959) Contact electron-spin coupling of nuclear magnetic moments. J Chem Phys 30:11–15

    Article  ADS  Google Scholar 

  67. Pardi A, Billeter M, Wüthrich K (1984) Calibration of the angular dependence of the amide proton–Cα proton coupling constants, 3JHNα, in a globular protein. J Mol Biol 180:741–751

    Article  PubMed  Google Scholar 

  68. Feig M, MacKerrell AD Jr, Brooks III CL (2004) Force field influence on the observation of π-helical protein structures in molecular dynamics simulations. J Phys Chem 107:2831–2836

    Google Scholar 

  69. Armen R, Alonso DOV, Daggett V (2003) The role of α-, 310-, and π-helix in helix → coil transitions. Protein Sci 12:1145–1157

    Article  PubMed  Google Scholar 

  70. Peter C, Rueping M, Wörner HJ, Jaun B, Seebach D, van Gunsteren WF (2003) Molecular dynamics of small peptides: can one derive conformational spectra from ROESY spectra. Chem Eur J 9:5838–5849

    Article  Google Scholar 

  71. Iwadate M, Asakura T, Dubovskii PV, Yamada H, Akasaka K, Williamson MP (2001) Pressure-dependent changes in the structure of the melittin α-helix determined by NMR. J Biomol NMR 19:115–124

    Article  PubMed  Google Scholar 

  72. Chou PY, Fasman GD (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Advan Enzymol 47:45–148

    Google Scholar 

  73. Barlow DJ, Thornton JM (1988) Helix geometry in proteins. J Mol Biol 201:601–619

    Article  PubMed  Google Scholar 

  74. von Heijne G (1991) Proline kinks in transmembrane α-helices. J Mol Biol, 218:499–503

    Article  Google Scholar 

  75. Cordes FS, Bright JN, Sansom MSP (2002) Proline-induced distortions of transmembrane helices. J Mol Biol, 323:951–960

    Article  Google Scholar 

  76. Brandl CJ, Deber CM (1989) Hypothesis about the function of membrane-buried proline residues in transport proteins. Proc Natl Acad Sci 83:917–921

    Article  ADS  Google Scholar 

  77. Woolfson DN, Mortishire-Smith RJ, Williams DH (1991) Conserved positioning of proline residues in membrane-spanning helices of ion-channel proteins. Biochem Biophys Res Commun 175:733–737

    Article  PubMed  Google Scholar 

  78. Segrest JP, De Loof H, Dohlmann JG, Brouilette CG, Anantharamaiah GM (1990) Amphipathic helix motif: classes and properties. Proteins: Struct Funct Genet 8:103–117

    Article  Google Scholar 

  79. Monneé M, Nilsson I, Johansson M, Elmhed N, von Heijne G (1998) Positively and negatively charged residues have different effects on the position in the membrane of a model transmembrane helix. J Mol Biol 284:1177–1183

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support was obtained through the National Center of Competence in Research (NCCR) Structural Biology of the Swiss National Science Foundation, which is gratefully acknowledged. A.G. thanks Dr. Bojan Zagrovic and Dr. Chris Oostenbrink for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred F. van. Gunsteren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glättli, A., Chandrasekhar, I. & Gunsteren, W.F.v. A molecular dynamics study of the bee venom melittin in aqueous solution, in methanol, and inserted in a phospholipid bilayer. Eur Biophys J 35, 255–267 (2006). https://doi.org/10.1007/s00249-005-0033-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-005-0033-7

Keywords

Navigation