Skip to main content
Log in

Analysis of the flexibility and stability of the structure of magainin in a bilayer, and in aqueous and nonaqueous solutions using molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The precise mode of the antimicrobial activity of Magainin (Mag)—an antimicrobial peptide (AMP)—is still unclear. In this study, the conformation of Mag was characterized in water, and in a methanol and lipid bilayer [palmitoyl-oleoylphosphatidylcholine (POPC)] using a molecular dynamics (MD) simulation technique. To describe the role conformation plays in Mag function, the global conformational differences within three systems were studied. Through analysis of the resulting configuration ensembles, the differences in the three systems, such as overall flexibility and average secondary structure, were studied. It is suggested that these differences may be important enough to influence interactions with lipid biomembranes, thereby influencing key properties such as penetration into cell membrane and stability.

Snapshot of the simulation system for a Magainin (Mag) monomer (peptide is in surfacerepresentation colored by residue). Lipids are shown in gray licorice representation with wateratoms colored green on either side

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    Article  CAS  Google Scholar 

  2. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250

    Article  CAS  Google Scholar 

  3. Hancock RE, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551–1557

    Article  CAS  Google Scholar 

  4. Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta Biomembr 1788(8):1687–1692

    Article  CAS  Google Scholar 

  5. Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29(9):464–472

    Article  CAS  Google Scholar 

  6. Piers KL, Brown MH, Hancock R (1994) Improvement of outer membrane-permeabilizing and lipopolysaccharide-binding activities of an antimicrobial cationic peptide by C-terminal modification. Antimicrob Agents Chemother 38(10):2311–2316

    Article  CAS  Google Scholar 

  7. Epand RF, Pollard JE, Wright JO, Savage PB, Epand RM (2010) Depolarization, bacterial membrane composition, and the antimicrobial action of ceragenins. Antimicrob Agents Chemother 54(9):3708–3713

    Article  CAS  Google Scholar 

  8. Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta Biomembr 1778(2):357–375

    Article  CAS  Google Scholar 

  9. Peters BM, Shirtliff ME, Jabra-Rizk MA (2010) Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog 6(10):e1001067

    Article  Google Scholar 

  10. Milletti F (2012) Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today 17(15):850–860

    Article  CAS  Google Scholar 

  11. Madani F, Lindberg S, Langel Ü, Futaki S, Gräslund A (2011) Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011:414729

  12. Huang HW (2000) Action of antimicrobial peptides: two-state model. Biochemistry 39(29):8347–8352

    Article  CAS  Google Scholar 

  13. Huang HW (2006) Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochim Biophys Acta Biomembr 1758(9):1292–1302

    Article  CAS  Google Scholar 

  14. Lee M-T, Hung W-C, Chen F-Y, Huang HW (2005) Many-body effect of antimicrobial peptides: on the correlation between lipid’s spontaneous curvature and pore formation. Biophys J 89(6):4006–4016

    Article  CAS  Google Scholar 

  15. Bolintineanu DS, Kaznessis YN (2011) Computational studies of protegrin antimicrobial peptides: a review. Peptides 32(1):188–201

    Article  CAS  Google Scholar 

  16. Fjell CD, Hiss JA, Hancock RE, Schneider G (2011) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11(1):37–51

    Google Scholar 

  17. Nishie M, Nagao J-I, Sonomoto K (2012) Antibacterial peptides “bacteriocins”: an overview of their diverse characteristics and applications. Biocontrol Sci 17(1):1–16

    Article  CAS  Google Scholar 

  18. Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta Biomembr 1462(1):11–28

    Article  CAS  Google Scholar 

  19. Bessalle R, Kapitkovsky A, Gorea A, Shalit I, Fridkin M (1990) All-d-magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett 274(1):151–155

    Article  CAS  Google Scholar 

  20. Chen J, Falla TJ, Liu H, Hurst MA, Fujii CA, Mosca DA, Embree JR, Loury DJ, Radel PA, Cheng Chang C (2000) Development of protegrins for the treatment and prevention of oral mucositis: structure–activity relationships of synthetic protegrin analogues. Pept Sci 55(1):88–98

    Article  CAS  Google Scholar 

  21. Lai JR, Epand RF, Weisblum B, Epand RM, Gellman SH (2006) Roles of salt and conformation in the biological and physicochemical behavior of protegrin-1 and designed analogues: correlation of antimicrobial, hemolytic, and lipid bilayer-perturbing activities. Biochemistry 45(51):15718–15730

    Article  CAS  Google Scholar 

  22. Wade D, Boman A, Wåhlin B, Drain C, Andreu D, Boman HG, Merrifield RB (1990) All-d amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci USA 87(12):4761–4765

    Article  CAS  Google Scholar 

  23. Bouvrais H, Méléard P, Pott T, Jensen KJ, Brask J, Ipsen JH (2008) Softening of POPC membranes by magainin. Biophys Chem 137(1):7–12

    Article  CAS  Google Scholar 

  24. Murzyn K, Pasenkiewicz-Gierula M (2003) Construction of a toroidal model for the magainin pore. J Mol Model 9(4):217–224

    Article  CAS  Google Scholar 

  25. Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84(15):5449–5453

    Article  CAS  Google Scholar 

  26. Zasloff M, Martin B, Chen H-C (1988) Antimicrobial activity of synthetic magainin peptides and several analogues. Proc Natl Acad Sci USA 85(3):910–913

    Article  CAS  Google Scholar 

  27. Williams RW, Starman R, Taylor KM, Gable K, Beeler T, Zasloff M, Covell D (1990) Raman spectroscopy of synthetic antimicrobial frog peptides magainin 2a and PGLa. Biochemistry 29(18):4490–4496

    Article  CAS  Google Scholar 

  28. Jackson M, Mantsch HH, Spencer JH (1992) Conformation of magainin-2 and related peptides in aqueous solution and membrane environments probed by Fourier transform infrared spectroscopy. Biochemistry 31(32):7289–7293

    Article  CAS  Google Scholar 

  29. Wieprecht T, Dathe M, Schümann M, Krause E, Beyermann M, Bienert M (1996) Conformational and functional study of magainin 2 in model membrane environments using the new approach of systematic double-d-amino acid replacement. Biochemistry 35(33):10844–10853

    Article  CAS  Google Scholar 

  30. Marion D, Zasloff M, Bax A (1988) A two-dimensional NMR study of the antimicrobial peptide magainin 2. FEBS Lett 227(1):21–26

    Article  CAS  Google Scholar 

  31. Matsuzaki K, Harada M, Funakoshi S, Fujii N, Miyajima K (1991) Physicochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers. Biochim Biophys Acta Biomembr 1063(1):162–170

    Article  CAS  Google Scholar 

  32. Bechinger B, Kim Y, Chirlian L, Gesell J, Neumann J-M, Montal M, Tomich J, Zasloff M, Opella S (1991) Orientations of amphipathic helical peptides in membrane bilayers determined by solid-state NMR spectroscopy. J Biomol NMR 1(2):167–173

    Article  CAS  Google Scholar 

  33. Bechinger B, Zasloff M, Opella S (1992) Structure and interactions of magainin antibiotic peptides in lipid bilayers: a solid-state nuclear magnetic resonance investigation. Biophys J 62(1):12

    Article  CAS  Google Scholar 

  34. Bechinger B, Zasloff M, Opella SJ (1993) Structure and orientation of the antibiotic peptide magainin in membranes by solid‐state nuclear magnetic resonance spectroscopy. Protein Sci 2(12):2077–2084

    Article  CAS  Google Scholar 

  35. Milik M, Skolnick J (1993) Insertion of peptide chains into lipid membranes: an off‐lattice Monte Carlo dynamics model. Proteins: Struct Funct Bioinf 15(1):10–25

    Article  CAS  Google Scholar 

  36. Matsuzaki K, Murase O, Tokuda H, Funakoshi S, Fujii N, Miyajima K (1994) Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry 33(11):3342–3349

    Article  CAS  Google Scholar 

  37. Ludtke SJ, He K, Wu Y, Huang HW (1994) Cooperative membrane insertion of magainin correlated with its cytolytic activity. Biochim Biophys Acta Biomembr 1190(1):181–184

    Article  CAS  Google Scholar 

  38. Schümann M, Dathe M, Wieprecht T, Beyermann M, Bienert M (1997) The tendency of magainin to associate upon binding to phospholipid bilayers. Biochemistry 36(14):4345–4351

    Article  Google Scholar 

  39. Ludtke S, He K, Huang H (1995) Membrane thinning caused by magainin 2. Biochemistry 34(51):16764–16769. doi:10.1021/bi00051a026

    Article  CAS  Google Scholar 

  40. Zhao H (2003) Mode of action of antimicrobial peptides. University of Helsinki

  41. Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW (1996) Membrane pores induced by magainin. Biochemistry 35(43):13723–13728

    Article  CAS  Google Scholar 

  42. Matsuzaki K, K-i S, Ishibe N, Ueha M, Nakata S, Miyajima K, Epand RM (1998) Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry 37(34):11856–11863

    Article  CAS  Google Scholar 

  43. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Mol Biol 9(9):646–652

    Article  CAS  Google Scholar 

  44. Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE (2009) Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol 19(2):120–127

    Article  CAS  Google Scholar 

  45. Tieleman D, Sansom M (2001) Molecular dynamics simulations of antimicrobial peptides: from membrane binding to trans‐membrane channels. Int J Quantum Chem 83(3‐4):166–179

    Article  CAS  Google Scholar 

  46. Kandasamy SK, Larson RG (2006) Effect of salt on the interactions of antimicrobial peptides with zwitterionic lipid bilayers. Biochim Biophys Acta Biomembr 1758(9):1274–1284

    Article  CAS  Google Scholar 

  47. Matyus E, Kandt C, Tieleman DP (2007) Computer simulation of antimicrobial peptides. Curr Med Chem 14(26):2789–2798

    Article  CAS  Google Scholar 

  48. Hsu JC, Yip CM (2007) Molecular dynamics simulations of indolicidin association with model lipid bilayers. Biophys J 92(12):L100–L102

    Article  CAS  Google Scholar 

  49. Khandelia H, Ipsen JH, Mouritsen OG (2008) The impact of peptides on lipid membranes. Biochim Biophys Acta Biomembr 1778(7):1528–1536

    Article  CAS  Google Scholar 

  50. Pan J, Tieleman DP, Nagle JF, Kučerka N, Tristram-Nagle S (2009) Alamethicin in lipid bilayers: combined use of X-ray scattering and MD simulations. Biochim Biophys Acta Biomembr 1788(6):1387–1397

    Article  CAS  Google Scholar 

  51. Dunkin CM, Pokorny A, Almeida PF, Lee H-S (2010) Molecular dynamics studies of transportan 10 (tp10) interacting with a POPC lipid bilayer. J Phys Chem B 115(5):1188–1198

    Article  Google Scholar 

  52. Leontiadou H, Mark AE, Marrink SJ (2006) Antimicrobial peptides in action. J Am Chem Soc 128(37):12156–12161

    Article  CAS  Google Scholar 

  53. Sengupta D, Leontiadou H, Mark AE, Marrink S-J (2008) Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta Biomembr 1778(10):2308–2317

    Article  CAS  Google Scholar 

  54. Shahlaei M, Madadkar-Sobhani A, Fassihi A, Saghaie L (2011) Exploring a model of a chemokine receptor/ligand complex in an explicit membrane environment by molecular dynamics simulation: the human CCR1 receptor. J Chem Inf Model 51(10):2717–2730

    Article  CAS  Google Scholar 

  55. Fraternali F (1990) Restrained and unrestrained molecular dynamics simulations in the NVT ensemble of alamethicin. Biopolymers 30(11‐12):1083–1099

    Article  CAS  Google Scholar 

  56. Gibbs N, Sessions RB, Williams PB, Dempsey CE (1997) Helix bending in alamethicin: molecular dynamics simulations and amide hydrogen exchange in methanol. Biophys J 72(6):2490–2495

    Article  CAS  Google Scholar 

  57. Biggin P, Breed J, Son H, Sansom M (1997) Simulation studies of alamethicin-bilayer interactions. Biophys J 72(2):627–636

    Article  CAS  Google Scholar 

  58. Uversky VN, Narizhneva NV, Kirschstein SO, Winter S, Löber G (1997) Conformational transitions provoked by organic solvents in beta-lactoglobulin: can a molten globule like intermediate be induced by the decrease in dielectric constant? Fold Des 2(3):163–172

    Article  CAS  Google Scholar 

  59. Sessions RB, Gibbs N, Dempsey CE (1998) Hydrogen bonding in helical polypeptides from molecular dynamics simulations and amide hydrogen exchange analysis: alamethicin and melittin in methanol. Biophys J 74(1):138–152

    Article  CAS  Google Scholar 

  60. Dempsey CE (1995) Hydrogen bond stabilities in the isolated alamethicin helix: pH-dependent amide exchange measurements in methanol. J Am Chem Soc 117(28):7526–7534

    Article  CAS  Google Scholar 

  61. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  Google Scholar 

  62. van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WR, Tironi IG (1996) Biomolecular simulation: the {GROMOS96} manual and user guide. Vdf Hochschulverlag, Zürich

  63. Daura X, Mark AE, Van Gunsteren WF (1998) Parametrization of aliphatic CHn united atoms of GROMOS96 force field. J Comput Chem 19(5):535–547

    Article  CAS  Google Scholar 

  64. Peter Tieleman D, Berendsen HJ, Sansom MS (1999) An alamethicin channel in a lipid bilayer: molecular dynamics simulations. Biophys J 76(4):1757–1769

    Article  Google Scholar 

  65. Berendsen HJ, Postma J, Van Gunsteren W, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Springer, Dordrecht, pp 331–342

  66. Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

    Article  CAS  Google Scholar 

  67. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers 22(12):2577–2637

    Article  CAS  Google Scholar 

  68. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  69. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics:btt055

  70. Berendsen HJ, Postma JPM, van Gunsteren WF, DiNola A, Haak J (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684

    Article  CAS  Google Scholar 

  71. Tieleman DP, Sansom MS, Berendsen HJ (1999) Alamethicin helices in a bilayer and in solution: molecular dynamics simulations. Biophys J 76(1):40–49

    Article  CAS  Google Scholar 

  72. Gesell J, Zasloff M, Opella SJ (1997) Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an α-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. J Biomol NMR 9(2):127–135

    Article  CAS  Google Scholar 

  73. Kandt C, Ash WL, Peter Tieleman D (2007) Setting up and running molecular dynamics simulations of membrane proteins. Methods 41(4):475–488

    Article  CAS  Google Scholar 

  74. Amadei A, Linssen A, Berendsen HJ (1993) Essential dynamics of proteins. Proteins: Struct Funct Bioinf 17(4):412–425

    Article  CAS  Google Scholar 

  75. Papaleo E, Mereghetti P, Fantucci P, Grandori R, De Gioia L (2009) Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: the myoglobin case. J Mol Graph Model 27(8):889–899

    Article  CAS  Google Scholar 

  76. Dathe M, Wieprecht T (1999) Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta Biomembr 1462(1):71–87

    Article  CAS  Google Scholar 

  77. Jeffrey GA (1997) An introduction to hydrogen bonding, vol 12. Oxford University Press, New York

    Google Scholar 

  78. Khandelia H, Kaznessis YN (2006) Molecular dynamics investigation of the influence of anionic and zwitterionic interfaces on antimicrobial peptides’ structure: implications for peptide toxicity and activity. Peptides 27(6):1192–1200

    Article  CAS  Google Scholar 

  79. Gao X, Wong TC (2001) Molecular dynamics simulation of adrenocorticotropin (1–10) peptide in a solvated dodecylphosphocholine micelle. Biopolymers 58(7):643–659

    Article  CAS  Google Scholar 

  80. Shai Y, Oren Z (1996) Diastereomers of cytolysins, a novel class of potent antibacterial peptides. J Biol Chem 271(13):7305–7308

    Article  CAS  Google Scholar 

  81. Levitt M, Greer J (1977) Automatic identification of secondary structure in globular proteins. J Mol Biol 114(2):181–239

    Article  CAS  Google Scholar 

  82. Laberge M, Yonetani T (2008) Molecular dynamics simulations of hemoglobin A in different states and bound to DPG: effector-linked perturbation of tertiary conformations and HbA concerted dynamics. Biophys J 94(7):2737–2751

    Article  CAS  Google Scholar 

  83. Suh JY, Lee YT, Park CB, Lee KH, Kim SC, Choi BS (1999) Structural and functional implications of a proline residue in the antimicrobial peptide gaegurin. Eur J Biochem 266(2):665–674

    Article  CAS  Google Scholar 

  84. Shen L, Bassolino D, Stouch T (1997) Transmembrane helix structure, dynamics, and interactions: multi-nanosecond molecular dynamics simulations. Biophys J 73(1):3–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the two anonymous reviewers for their very useful comments and suggestions, which help us improve the quality of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Shahlaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaili, E., Shahlaei, M. Analysis of the flexibility and stability of the structure of magainin in a bilayer, and in aqueous and nonaqueous solutions using molecular dynamics simulations. J Mol Model 21, 73 (2015). https://doi.org/10.1007/s00894-015-2622-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2622-4

Keywords

Navigation