Skip to main content
Log in

Interaction of biofunctionalized gold nanoparticles with model phospholipid membranes

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The understanding of the interaction of nanoparticles with cell membranes and the penetration of these nano-objects through cell wall is highly required for their biomedical application. In this work were aimed at the study of the interaction of gold nanoparticles with model phospholipid membranes prepared at the air/water interface in a Langmuir trough. Spherical (10 and 15 nm mean diameter) and rod-like gold (aspect ratio: 2.8) nanoparticles were synthesized and biofunctionalized with l-cysteine and l-glutathione. The gold nanoparticles were characterized by TEM images and UV–Vis absorbance measurements. The interaction of the biofunctionalized gold nanoparticles with the model monolayer membrane was studied by surface pressure versus surface area compressional isotherms and by the measurement of the change in surface pressure of a preformed model membrane. The effect of the initial surface pressure of the preformed membrane was evaluated to determine the maximum insertion pressure and synergy. We have found that the driving forces of the bioconjugated Au nanoparticle (NP) or Au nanorod (NR) penetration into the monolayer membrane is mostly determined by electrostatic interaction and orientational van der Waals forces. Monolayer films were transferred with Langmuir–Blodgett technique onto solid substrates and the nanoparticles were visualized with AFM technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cobley CM, Chen J, Cho EC, Wang LV, Xia Y (2006) Chem Soc Rev 35:1084

    Article  Google Scholar 

  2. Wei Q, Wei A (2010) In: Weissig V, D'Souza GGM (eds) Organelle-specific pharmaceutical nanotechnology. John Wiley & Sons, New Jersey, Chapter 26

    Google Scholar 

  3. Thanh NTK, Green LAW (2010) Nano Today 5:213

    Article  CAS  Google Scholar 

  4. Hutter E, Fendler JH (2004) Adv Mater 16(19):1685–1706

    Article  CAS  Google Scholar 

  5. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Nanomedicine-UK 5:681

    Article  CAS  Google Scholar 

  6. Pissuwan D, Valenzuela SM, Cortie MB (2006) Trends Biotechnol 24:62

    Article  CAS  Google Scholar 

  7. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Laser Med Sci 23:217

    Article  Google Scholar 

  8. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) Chem Soc Rev 41:2740

    Article  CAS  Google Scholar 

  9. Choi M-R, Stanton-Maxey KJ, Levin CS, Bardhan R, Akin D, Sturgis J, Robinson JP, Bashir R, Halas NJ, Clare SE (2007) Nano Lett 7:3759

    Article  CAS  Google Scholar 

  10. Ba H, Rodríguez-Fernández J, Stefani FD, Feldmann J (2010) Nano Lett 10:3006

    Article  CAS  Google Scholar 

  11. Yang M, Alvarez-Puebla R, Kim HS, Aldeanueva-Potel P, Liz-Marzán LM, Kotov NA (2010) Nano Lett 10:4013

    Article  CAS  Google Scholar 

  12. Park HH, Park H, Jamison AC, Randall Lee T (2014) Colloid Polym Sci 292:411

    Article  CAS  Google Scholar 

  13. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Nat Mater 8:543

    Article  CAS  Google Scholar 

  14. Verma A, Stellacci F (2010) Small 6:12

    Article  CAS  Google Scholar 

  15. Lerch S, Dass M, Musyanovych A, Landfester K, Mailänder V (2013) Eur J Pharm Biopharm 84:265

    Article  CAS  Google Scholar 

  16. Peetla C, Stine A, Labhasetwar V (2009) Mol Pharm 6:1264

    Article  CAS  Google Scholar 

  17. Olubummo A, Schulz M, Schöps R, Kressler J, Binder WH (2014) Langmuir 30:259

    Article  CAS  Google Scholar 

  18. Peetla C, Rao KS, Labhasetwar V (2009) Mol Pharm 6:1311

    Article  CAS  Google Scholar 

  19. Turkevich J (1985) Gold Bull 18:86

    Article  CAS  Google Scholar 

  20. Csapó E, Patakfalvi R, Hornok V, Tóth LT, Sipos Á, Szalai A, Csete M, Dékány I (2010) Colloids Surf B 98:43

    Article  Google Scholar 

  21. Csapó E, Sebők D, Bohus G, Makrai Babić J, Šupljika F, Dékány I, Kallay N, Preočanin T (2014) J Dispers Sci Technol. doi:10.1080/01932691.2013.817314

    Google Scholar 

  22. Sebők D, Csapó E, Preočanin T, Bohus G, Kallay N, Dékány I (2013) Croat Chem Acta 86:287

    Article  Google Scholar 

  23. Jana NR, Gearheart L, Murphy CJ (2001) J Phys Chem B 105:4065

    Article  CAS  Google Scholar 

  24. Petty MC (1996) Langmuir−Blodgett films. Cambridge University Press, Cambridge, An introduction

    Google Scholar 

  25. Vollhardt D, Fainerman VB (2006) Adv Colloid Interf Sci 127:83

    Article  CAS  Google Scholar 

  26. Calvez P, Demers E, Boisselier E, Salesse C (2011) Langmuir 27:1373

    Article  CAS  Google Scholar 

  27. Boisselier E, Calvez P, Demers E, Cantin L, Salesse C (2012) Langmuir 28:9680

    Article  CAS  Google Scholar 

  28. Lee K-S, El-Sayed MA (2006) J Phys Chem B 110:19220

    Article  CAS  Google Scholar 

  29. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Nanomedicine 2:681

    Article  CAS  Google Scholar 

  30. Jabłonowska E, Bilewicz R (2007) Thin Solid Films 515:3962–3966

    Article  Google Scholar 

  31. Peetla C, Labhasetwar V (2009) Langmuir 25:2369

    Article  CAS  Google Scholar 

  32. Wanga B, Zhangb L, Baea SC, Granick S (2008) Proc Natl Acad Sci U S A 105:18171

    Article  Google Scholar 

  33. Marcelja S (1974) Biochim Biophys Acta 367:165

    Article  CAS  Google Scholar 

  34. Lin J, Zhang H, Chen Z, Zheng Y (2010) ACS Nano 4:5421

    Article  CAS  Google Scholar 

  35. Torrano AA, Pereira AS, Oliveira ON Jr, Barros-Timmons A (2013) Colloids Surf B 108:120

    Article  CAS  Google Scholar 

  36. Cevc G (1993) Phospholipids handbook. Marcel Dekker New York

  37. Caro AL, Mackie AR, Gunning AP, Wilde PJ, Morris VJ, Rodríguez Nino MR, Rodríguez Patino JM (2007) Role of Electrostatic Interactions on Molecular Self-Assembly of Protein + Phospholipid Films at the Air–Water Interface In : Dickinson E, E Leser M E (eds) Food Colloids: Self-Assembly and Material Science, Royal Society of Chemistry, Cambridge, pp. 227–243

  38. Zhai X, Kleijn JM (1997) Thin Solid Films 304:327

    Article  CAS  Google Scholar 

Download references

Supporting Information

Supporting information is available about the pH dependent behaviour of the species used in this work, sketch of the interaction in case of the Au nanorods and additional AFM images.

Acknowledgments

The authors are very thankful for the financial support of TÁMOP-4.2.2.A-11/1/KONV-2012-0047. This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 ‘National Excellence Program’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imre Dékány.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 439 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ábrahám, N., Csapó, E., Bohus, G. et al. Interaction of biofunctionalized gold nanoparticles with model phospholipid membranes. Colloid Polym Sci 292, 2715–2725 (2014). https://doi.org/10.1007/s00396-014-3302-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3302-0

Keywords

Navigation