Skip to main content
Log in

Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia

  • Research
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The hot spring Vranjska Banja is the hottest spring on the Balkan Peninsula with a water temperature of 63–95 °C and a pH value of 7.1, in situ. According to the physicochemical analysis, Vranjska Banja hot spring belongs to the bicarbonated and sulfated hyperthermal waters. The structures of microbial community of this geothermal spring are still largely unexplored. In order to determine and monitor the diversity of microbiota of the Vranjska Banja hot spring, a comprehensive culture-independent metagenomic analysis was conducted in parallel with a culture-dependent approach for the first time. Microbial profiling using amplicon sequencing analysis revealed the presence of phylogenetically novel taxa, ranging from species to phyla. Cultivation-based methods resulted in the isolation of 17 strains belonging to the genera Anoxybacillus, Bacillus, Geobacillus, and Hydrogenophillus. Whole-genome sequencing of five representative strains was then performed. The genomic characterization and OrthoANI analysis revealed that the Vranjska Banja hot spring harbors phylogenetically novel species of the genus Anoxybacillus, proving its uniqueness. Moreover, these isolates contain stress response genes that enable them to survive in the harsh conditions of the hot springs. The results of the in silico analysis show that most of the sequenced strains have the potential to produce thermostable enzymes (proteases, lipases, amylases, phytase, chitinase, and glucanase) and various antimicrobial molecules that can be of great importance for industrial, agricultural, and biotechnological applications. Finally, this study provides a basis for further research and understanding of the metabolic potential of these microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All the data we have, we deposited on the NCBI database and put in the supplementary material.

References

  1. Gagliano AL, Tagliavia M, D’Alessandro W, Franzetti A, Parello F, Quatrini P (2016) So close, so different: geothermal flux shapes divergent soil microbial communities at neighbouring sites. Geobiology 14:150–162. https://doi.org/10.1111/gbi.12167

    Article  CAS  PubMed  Google Scholar 

  2. Valeriani F, Crognale S, Protano C, Gianfranceschi G, Orsini M, Vitali M, Spica VR (2018) Metagenomic analysis of bacterial community in a travertine depositing hot spring. New Microbiol 41:126–135

    CAS  PubMed  Google Scholar 

  3. Smrhova T, Jani K, Pajer P, Kapinusova G, Vylita T, Suman J, Strejcek M, Uhlik O (2022) Prokaryotes of renowned Karlovy Vary (Carlsbad) thermal springs: phylogenetic and cultivation analysis. Environ Microbiome 17(1):1–17. https://doi.org/10.1186/s40793-022-00440-2

    Article  CAS  Google Scholar 

  4. Amin A, Ahmed I, Salam N, Kim BY, Singh D, Zhi XY, Xioa M, Li WJ (2017) Diversity and distribution of thermophilic bacteria in hot springs of Pakistan. Microb Ecol 74(1):116–127. https://doi.org/10.1007/s00248-017-0930-1

    Article  PubMed  Google Scholar 

  5. Wemheuer B, Taube R, Akyol P, Wemheuer F, Daniel R (2013) Microbial diversity and biochemical potential encoded by thermal spring metagenomes derived from the Kamchatka Peninsula. Archaea 2013:136714. https://doi.org/10.1155/2013/136714

  6. Gupta G, Srivastava S, Khare SK, Prakash V (2014) Extremophiles: an overview of microorganism from extreme environment. Int J Agric Environ Biotechnol 7:371–380. https://doi.org/10.5958/2230-732X.2014.00258.7

    Article  Google Scholar 

  7. Atalah J, Cáceres-Moreno P, Espina G, Blamey JM (2019) Thermophiles and the applications of their enzymes as new biocatalysts. Bioresour Technol 280:478–488. https://doi.org/10.1016/j.biortech.2019.02.008

    Article  CAS  PubMed  Google Scholar 

  8. Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–297. https://doi.org/10.1128/jb.98.1.289-297.1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mullis KB (1990) The Unusual Origin of the Polymerase Chain Reaction. Sci Am 262:56–65. https://www.jstor.org/stable/24996713

  10. Valjarević A, Srećković-Batoćanin D, Valjarević D, Matović V (2018) A GIS-based method for analysis of a better utilization of thermal-mineral springs in the municipality of Kursumlija (Serbia). Renew Sust Energ Rev 92:948–957. https://doi.org/10.1016/j.rser.2018.05.005

    Article  Google Scholar 

  11. Pantić TP, Birke M, Petrović B, Nikolov J, Dragišić V, Živanović V (2015) Hydrogeochemistry of thermal groundwaters in the Serbian crystalline core region. J Geochem Explor 159:101–114. https://doi.org/10.1016/j.gexplo.2015.08.009

  12. Denda SL, Micić JM, Milanović-Pešić AZ, Brankov JJ, Bjeljac ŽN (2019) Utilization of geothermal springs as a renewable energy source: Vranjska Banja case study. Therm Sci 23:4083–4093. https://doi.org/10.2298/TSCI190816391D

    Article  Google Scholar 

  13. Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic manipulation of Streptomyces - a laboratory manual. The John Innes Foundation, Norwich

  14. Jovcic B, Begovic J, Lozo J, Topisirovic L, Kojic M (2009) Dynamics of sodium dodecyl sulfate utilization and antibiotic susceptibility of strain Pseudomonas sp. ATCC19151. Arch Biol Sci 61:159–164. https://doi.org/10.2298/ABS0902159J

    Article  Google Scholar 

  15. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. https://doi.org/10.1128/AEM.01043-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Engel P, James R, Koga R, Kwong WK, McFrederick QS, Moran NA (2013) Standard methods for research on Apis mellifera gut symbionts. J Apic Res 52:1–24. https://doi.org/10.3896/IBRA.1.52.4.07

    Article  Google Scholar 

  20. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618. https://doi.org/10.1038/ismej.2011.139

    Article  CAS  PubMed  Google Scholar 

  21. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  22. Peng Y, Leung HCM, Yiu SM, Chin FYL (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28:1420–1428. https://doi.org/10.1093/bioinformatics/bts174

    Article  CAS  PubMed  Google Scholar 

  23. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595. https://doi.org/10.1093/bioinformatics/btp698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Disz T, Akhter S, Cuevas D, Olson R, Overbeek R, Vonstein V, Stevens R, Edwards RA (2010) Accessing the SEED genome databases via Web services API: tools for programmers. BMC Bioinform. https://doi.org/10.1186/1471-2105-11-319

    Article  Google Scholar 

  26. Krunić O, Sorajić S (2013) Balneological classification of mineral waters of Serbia. Srp Arh Celok Lek 141:72–80. https://doi.org/10.2298/SARH1302072K

    Article  PubMed  Google Scholar 

  27. Mehta R, Singhal P, Singh H, Damle D, Sharma AK (2016) Insight into thermophiles and their wide-spectrum applications. 3 Biotech 6(1):81. https://doi.org/10.1007/s13205-016-0368-z

  28. Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89(1):17–34. https://doi.org/10.1016/S0960-8524(03)00033-6

    Article  CAS  PubMed  Google Scholar 

  29. Georgevitsch P (1910) Bacillus thermophilus vranjensis. Arch Hyg 72:201–210

    Google Scholar 

  30. Zvirbulis E, Hatt HD (1969) Status of names of bacterial taxa not evaluated in Index Bergeyana (1966). Addendum II. Acetobacter to Butyrivibrio. Int J Syst Evol Microbiol 19:57–115

    Google Scholar 

  31. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377. https://doi.org/10.1111/j.1461-0248.2011.01736.x

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hunter P (2007) The human impact on biological diversity. How species adapt to urban challenges sheds light on evolution and provides clues about conservation. EMBO Rep 8:316–318. https://doi.org/10.1038/sj.embor.7400951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Teeling H, Glöckner FO (2012) Current opportunities and challenges in microbial metagenome analysis–a bioinformatic perspective. Brief Bioinforma 13:728–742. https://doi.org/10.1093/bib/bbs039

    Article  Google Scholar 

  34. Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376. https://doi.org/10.1128/JB.180.2.366-376.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Filipic B, Novovic K, Studholme DJ, Malesevic M, Mirkovic N, Kojic M, Jovcic B (2020) Shotgun metagenomics reveals differences in antibiotic resistance genes among bacterial communities in Western Balkans glacial lakes sediments. J Water Health 18:383–397. https://doi.org/10.2166/wh.2020.227

    Article  PubMed  Google Scholar 

  36. Kambourova M (2018) Thermostable enzymes and polysaccharides produced by thermophilic bacteria isolated from Bulgarian hot springs. Eng Life Sci 18:758–767. https://doi.org/10.1002/elsc.201800022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singh DN, Sood U, Singh AK, Gupta V, Shakarad M, Rawat CD, Lal R (2019) Genome sequencing revealed the biotechnological potential of an obligate thermophile Geobacillus thermoleovorans strain RL isolated from hot water spring. Indian J Microbiol 59:351–355. https://doi.org/10.1007/s12088-019-00809-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Panosyan H, Margaryan A, Birkeland NK (2021) Anoxybacillus karvacharensis sp. nov., a novel thermophilic bacterium isolated from the Karvachar geothermal spring in Nagorno-Karabakh. Int J Syst Evol Microbiol 71(10):005035. https://doi.org/10.1099/ijsem.0.005035

  39. Baker GC, Gaffar S, Cowan DA, Suharto AR (2001) Bacterial community analysis of Indonesian hot springs. FEMS Microbiol Lett 200:103–109. https://doi.org/10.1111/j.1574-6968.2001.tb10700.x

    Article  CAS  PubMed  Google Scholar 

  40. Uribe-Lorío L, Brenes-Guillén L, Hernández-Ascencio W, Mora-Amador R, González G, Ramírez-Umaña CJ, Díez B, Pedrós-Alió C (2019) The influence of temperature and pH on bacterial community composition of microbial mats in hot springs from Costa Rica. Microbiologyopen 8(10):e893. https://doi.org/10.1002/mbo3.893

  41. Blank CE, Cady SL, Pace NR (2002) Microbial composition of near-boiling silica-depositing thermal springs throughout Yellowstone National Park. Appl Environ Microbiol 68(10):5123–5135. https://doi.org/10.1128/AEM.68.10.5123-5135.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang S, Hou W, Dong H, Jiang H, Huang L, Wu G, Zhang C, Song Z, Zhang Y, Ren H, Zhang J, Zhang L (2013) Control of temperature on microbial community structure in hot springs of the Tibetan Plateau. PLoS One. https://doi.org/10.1371/journal.pone.0062901

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kanoksilapatham W, Pasomsup P, Keawram P, Cuecas A, Portillo MC, Gonzalez JM (2016) Fervidobacterium thailandense sp. nov., an extremely thermophilic bacterium isolated from a hot spring. Int J Syst Evol Microbiol 66(12):5023–5027. https://doi.org/10.1099/ijsem.0.001463

    Article  CAS  PubMed  Google Scholar 

  44. Cai J, Wang Y, Liu D, Zeng Y, Xue Y, Ma Y, Feng Y (2007) Fervidobacterium changbaicum sp. nov., a novel thermophilic anaerobic bacterium isolated from a hot spring of the Changbai Mountains, China. Int J Syst Evol Microbiol 57(10):2333–2336. https://doi.org/10.1099/ijs.0.64758-0

    Article  CAS  PubMed  Google Scholar 

  45. Panda AK, Bisht SS, De Mandal S, Kumar NS (2016) Bacterial and archeal community composition in hot springs from Indo-Burma region, North-east India. AMB Express 6(1):1–12. https://doi.org/10.1186/s13568-016-0284-y

    Article  CAS  Google Scholar 

  46. Poddar A, Das SK (2018) Microbiological studies of hot springs in India: a review. Arch Microbiol 200(1):1–18. https://doi.org/10.1007/s00203-017-1429-3

    Article  CAS  PubMed  Google Scholar 

  47. Stefanova K, Tomova I, Tomova A, Radchenkova N, Atanassov I, Kambourova M (2015) Archaeal and bacterial diversity in two hot springs from geothermal regions in Bulgaria as demostrated by 16S rRNA and GH-57 genes. Int Microbiol 18:217–223. https://doi.org/10.2436/20.1501.01.253

    Article  CAS  PubMed  Google Scholar 

  48. Chiriac CM, Szekeres E, Rudi K, Baricz A, Hegedus A, Dragoş N, Coman C (2017) Differences in temperature and water chemistry shape distinct diversity patterns in thermophilic microbial communities. Appl Environ Microbiol 83(21):e01363-e1417. https://doi.org/10.1128/AEM.01363-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Egan M, Dempsey E, Ryan CA, Ross RP, Stanton C (2021) The sporobiota of the human gut. Gut Microbes 13(1):1863134. https://doi.org/10.1080/19490976.2020.1863134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Derekova A, Mandeva R, Kambourova M (2008) Phylogenetic diversity of thermophilic carbohydrate degrading bacilli from Bulgarian hot springs. World J Microbiol Biotechnol 24:1697–1702. https://doi.org/10.1007/s11274-008-9663-0

    Article  CAS  Google Scholar 

  51. Atanassova M, Derekova A, Mandeva R, Sjøholm C, Kambourova M (2008) Anoxybacillus bogrovensis sp nov, a novel thermophilic bacterium isolated from a hot spring in Dolni Bogrov, Bulgaria. Int J Syst Evol Microbiol 58(10):2359–2362. https://doi.org/10.1099/ijs.0.65745-0

    Article  CAS  PubMed  Google Scholar 

  52. Derekova A, Sjøholm C, Mandeva R, Kambourova M (2007) Anoxybacillus rupiensis sp. nov., a novel thermophilic bacterium isolated from Rupi basin (Bulgaria). Extremophiles 11:577–583. https://doi.org/10.1007/s00792-007-0071-4

    Article  PubMed  Google Scholar 

  53. Ulucay O, Gormez A, Ozic C (2022) Identification, characterization and hydrolase producing performance of thermophilic bacteria: geothermal hot springs in the Eastern and Southeastern Anatolia Regions of Turkey. Antonie Van Leeuwenhoek 115:253–270. https://doi.org/10.1007/s10482-021-01678-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ranawat P, Rawat S (2017) Stress response physiology of thermophiles. Arch Microbiol 199:391–414. https://doi.org/10.1007/s00203-016-1331-4

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia [Grant No. 451–03-47/2023–01/200042].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.M., and M.K.; Methodology, S.T., V.T., and M.K.; Investigation, M.K., N.S., M.M. and D.M; Data Curation, M.M.; Writing—Original Draft Preparation, M.M. and M.K.; Writing—Review and Editing, D.M., N.S., and J.C.; Visualization, M.K., and M.M.; Supervision, M.K. and S.T. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Milka Malesevic.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malesevic, M., Stanisavljevic, N., Matijasevic, D. et al. Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia. Microb Ecol 86, 2344–2356 (2023). https://doi.org/10.1007/s00248-023-02242-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-023-02242-6

Keywords

Navigation