Skip to main content
Log in

Reduced Environmental Microbial Diversity on the Cuticle and in the Galleries of a Subterranean Termite Compared to Surrounding Soil

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Termites are intimately tied to the microbial world, as they utilize their gut microbiome for the conversion of plant cellulose into necessary nutrients. Subterranean termites must also protect themselves from the vast diversity of harmful microbes found in soil. However, not all soil microbes are harmful, such as Streptomyces and methanotrophic bacteria that some species of termites harbor in complex nest structures made of fecal material. The eastern subterranean termite, Reticulitermes flavipes, has a simple nest structure consisting of fecal lined galleries. We tested the hypothesis that R. flavipes maintains a select microbial community in its nests to limit the penetration of harmful soilborne pathogens and favor the growth of beneficial microbes. Using Illumina sequencing, we characterized the bacterial and fungal communities in the surrounding soil, in the nest galleries, and on the cuticle of workers. We found that the galleries provide a more beneficial microbial community than the surrounding soil. Bacterial and fungal diversity was highest in the soil, lower in the galleries, and least on the cuticle. Bacterial communities clustered together according to the substrate from which they were sampled, but this clustering was less clear in fungal communities. Most of the identified bacterial and fungal taxa were unique to one substrate, but the soil and gallery communities had very similar phylum-level taxonomic profiles. Notably, the galleries of R. flavipes also harbored both the potentially beneficial Streptomyces and the methanotrophic Methylacidiphilales, indicating that these microbial associations in fecal material pre-date the emergence of complex fecal nest structures. Surprisingly, several pathogenic groups were relatively abundant in the galleries and on the cuticle, suggesting that pathogens may accumulate within termite nests over time while putatively remaining at enzootic level during the lifetime of the colony.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Metadata and raw reads of 16S rRNA gene and ITS gene amplicons have been deposited in the Open Science Framework database, https://osf.io (https://doi.org/10.17605/OSF.IO/4CSN2).

References

  1. Wilson EO (1990) Success and dominance in ecosystems: the case of the social insects. In: Kinne O (ed) Excellence in ecology, vol 2. Ecology Institute, Oldendorf/Luhe, Federal Republic of Germany

  2. Keller S, Zimmermann G, Wilding N, Collins N, Hammond P, Webber J (1989) Mycopathogens of soil insects. Insect-Fungus Interact. 239–270

  3. Oi DH, Pereira RM (1993) Ant behavior and microbial pathogens (Hymenoptera: Formicidae). Fla. Entomol. 76:63–74

    Article  Google Scholar 

  4. Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, Princeton

    Google Scholar 

  5. Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzon A, Ownley BH (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol. 2(4):149–159

    Article  Google Scholar 

  6. Chouvenc T, Su N-Y, Grace JK (2011) Fifty years of attempted biological control of termites–analysis of a failure. Biol. Control 59(2):69–82

    Article  Google Scholar 

  7. Evans HC, Elliot SL, Hughes DP (2011) Hidden diversity behind the zombie-ant fungus Ophiocordyceps unilateralis: four new species described from carpenter ants in Minas Gerais, Brazil. PLoS One 6(3):e17024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hughes DP, Andersen SB, Hywel-Jones NL, Himaman W, Billen J, Boomsma JJ (2011) Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC Ecol. 11(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bignell DE (2006) Termites as soil engineers and soil processors. In: König HVA (ed) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin Heidelberg, pp 183–220

    Chapter  Google Scholar 

  10. Jouquet P, Dauber J, Lagerlöf J, Lavelle P, Lepage M (2006) Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Appl. Soil Ecol. 32(2):153–164

    Article  Google Scholar 

  11. Chouvenc T, Elliott ML, Su N-Y (2011) Rich microbial community associated with the nest material of Reticulitermes flavipes (Isoptera: Rhinotermitidae). Fla. Entomol. 94(1):115–116

    Article  Google Scholar 

  12. Chouvenc T, Bardunias P, Efstathion CA, Chakrabarti S, Elliott ML, Giblin-Davis R, Su N-Y (2013) Resource opportunities from the nest of dying subterranean termite (Isoptera: Rhinotermitidae) colonies: a laboratory case of ecological succession. Ann. Entomol. Soc. Am. 106(6):771–778

    Article  Google Scholar 

  13. Cremer S, Armitage SA, Schmid-Hempel P (2007) Social immunity. Curr. Biol. 17(16):R693–R702

    Article  CAS  PubMed  Google Scholar 

  14. Cremer S, Pull CD, Fuerst MA (2018) Social immunity: emergence and evolution of colony-level disease protection. Annu. Rev. Entomol. 63:105–123

    Article  CAS  PubMed  Google Scholar 

  15. Liu L, Zhao X-Y, Tang Q-B, Lei C-L, Huang Q-Y (2019) The mechanisms of social immunity against fungal infections in eusocial insects. Toxins 11(5):244

    Article  CAS  PubMed Central  Google Scholar 

  16. Brown Jr WL (1968) An hypothesis concerning the function of the metapleural glands in ants. Am. Nat. 102(924):188–191

    Article  Google Scholar 

  17. Hölldobler B, Engel-Siegel H (1984) On the metapleural gland of ants. Psyche: A Journal of Entomology 91(3–4):201–224

    Article  Google Scholar 

  18. Ortius-Lechner D, Maile R, Morgan ED, Boomsma JJ (2000) Metapleural gland secretion of the leaf-cutter ant Acromyrmex octospinosus: new compounds and their functional significance. J. Chem. Ecol. 26(7):1667–1683

    Article  CAS  Google Scholar 

  19. Rosengaus RB, Guldin MR, Traniello JF (1998) Inhibitory effect of termite fecal pellets on fungal spore germination. J. Chem. Ecol. 24(10):1697–1706

    Article  CAS  Google Scholar 

  20. Chouvenc T, Efstathion CA, Elliott ML (1770) Su N-Y (2013) extended disease resistance emerging from the faecal nest of a subterranean termite. Proc. R. Soc. B Biol. Sci. 280:20131885

    Article  Google Scholar 

  21. Bulmer MS, Bachelet I, Raman R, Rosengaus RB, Sasisekharan R (2009) Targeting an antimicrobial effector function in insect immunity as a pest control strategy. Proc. Natl. Acad. Sci. U. S. A. 106(31):12652–12657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bulmer MS, Crozier RH (2004) Duplication and diversifying selection among termite antifungal peptides. Mol. Biol. Evol. 21(12):2256–2264

    Article  CAS  PubMed  Google Scholar 

  23. Hamilton C, Lay F, Bulmer MS (2011) Subterranean termite prophylactic secretions and external antifungal defenses. J. Insect Physiol. 57(9):1259–1266

    Article  CAS  PubMed  Google Scholar 

  24. Lamberty M, Zachary D, Lanot R, Bordereau C, Robert A, Hoffmann JA, Bulet P (2001) Insect immunity. Constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. J. Biol. Chem. 276:4085–4092

    Article  CAS  PubMed  Google Scholar 

  25. Higashi M, Abe T, Burns TP (1992) Carbon—nitrogen balance and termite ecology. Proc. R. Soc. B Biol. Sci. 249(1326):303–308

    Article  Google Scholar 

  26. Eggleton P (2010) An introduction to termites: biology, taxonomy and functional morphology. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Berlin, pp 1–26

    Google Scholar 

  27. Vargo EL (2003) Hierarchical analysis of colony and population genetic structure of the eastern subterranean termite, Reticulitermes flavipes, using two classes of molecular markers. Evol 57(12):2805–2818

    CAS  Google Scholar 

  28. DeHeer CJ, Vargo EL (2004) Colony genetic organization and colony fusion in the termite Reticulitermes flavipes as revealed by foraging patterns over time and space. Mol. Ecol. 13(2):431–441

    Article  PubMed  Google Scholar 

  29. DeHeer C, Kutnik M, Vargo E, Bagneres A (2005) The breeding system and population structure of the termite Reticulitermes grassei in Southwestern France. Heredity 95(5):408–415

    Article  CAS  PubMed  Google Scholar 

  30. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79(17):5112–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. White T, Bruns T, Lee S, Taylor J, Innis M, Gelfand D, Sninsky J (1990) PCR protocols: a guide to methods and applications.

  32. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F (2018) QIIME 2: reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Prepr,

  33. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7):581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30(4):772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hamady M, Lozupone C, Knight R (2010) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4(1):17–27

    Article  CAS  PubMed  Google Scholar 

  36. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35(21):7188–7196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AF, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22(21):5271–5277

    Article  PubMed  Google Scholar 

  38. Sung G-H, Hywel-Jones NL, Sung J-M, Luangsa-ard JJ, Shrestha B, Spatafora JW (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 57:5–59

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chouvenc T, Su NY, Robert A (2009) Inhibition of Metarhizium anisopliae in the alimentary tract of the eastern subterranean termite Reticulitermes flavipes. J. Invertebr. Pathol. 101:130–136

    Article  CAS  PubMed  Google Scholar 

  40. Aguero CM, Eyer PA, Vargo EL (2020) Increased genetic diversity from colony merging in termites does not improve survival against a fungal pathogen. Sci. Rep. 10:1–9

    Article  Google Scholar 

  41. Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12(3):168–180

    Article  CAS  PubMed  Google Scholar 

  42. Brune A, Dietrich C (2015) The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu. Rev. Microbiol. 69:145–166

    Article  CAS  PubMed  Google Scholar 

  43. Rouland-Lefèvre C (2000) Symbiosis with fungi. In: Takuya ABD, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 289–306

    Chapter  Google Scholar 

  44. Nobre T, Rouland-Lefèvre C, Aanen DK (2010) Comparative biology of fungus cultivation in termites and ants. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer-Verlag, Berlin, pp 193–210

    Chapter  Google Scholar 

  45. Waksman SA, Lechevalier HA (1962) The Actinomycetes. Vol. III. Antibiotics of Actinomycetes

  46. Goodfellow M, Williams S (1983) Ecology of Actinomycetes. Annu. Rev. Microbiol. 37(1):189–216

    Article  CAS  PubMed  Google Scholar 

  47. Kaltenpoth M (2009) Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol. 17(12):529–535

    Article  CAS  PubMed  Google Scholar 

  48. Visser AA, Nobre T, Currie CR, Aanen DK, Poulsen M (2012) Exploring the potential for Actinobacteria as defensive symbionts in fungus-growing termites. Microb. Ecol. 63(4):975–985

    Article  CAS  PubMed  Google Scholar 

  49. Benndorf R, Guo H, Sommerwerk E, Weigel C, Garcia-Altares M, Martin K, Hu H, Küfner M, de Beer Z, Poulsen M (2018) Natural products from Actinobacteria associated with fungus-growing termites. Antibiotics 7(3):83

    Article  CAS  PubMed Central  Google Scholar 

  50. Currie CR, Scott JA, Summerbell RC, Malloch D (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398(6729):701–704

    Article  CAS  Google Scholar 

  51. Little AE, Currie CR (2007) Symbiotic complexity: discovery of a fifth symbiont in the attine ant–microbe symbiosis. Biol. Lett. 3(5):501–504

    Article  PubMed  PubMed Central  Google Scholar 

  52. Aanen DK, Eggleton P (2017) Symbiogenesis: beyond the endosymbiosis theory? J. Theor. Biol. 434:99–103

    Article  PubMed  Google Scholar 

  53. Wood T (1988) Termites and the soil environment. Biol. Fertil. Soils 6(3):228–236

    Article  Google Scholar 

  54. Arango A, Carlson CM, Currie CR, McDonald BR, Book AJ, Green F, Lebow NK, Raffa KF (2016) Antimicrobial activity of actinobacteria isolated from the guts of subterranean termites. Environ. Entomol. 45:1415–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chouvenc T, Elliott ML, Šobotník J, Efstathion CA, Su N-Y (2018) The termite fecal nest: a framework for the opportunistic acquisition of beneficial soil Streptomyces (Actinomycetales: Streptomycetaceae). Environ. Entomol. 47:1431–1439

    CAS  PubMed  Google Scholar 

  56. Sanderson M (1996) Biomass of termites and their emissions of methane and carbon dioxide: a global database. Glob. Biogeochem. Cycles 10(4):543–557

    Article  CAS  Google Scholar 

  57. Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L (2013) Three decades of global methane sources and sinks. Nat. Geosci. 6(10):813–823

    Article  CAS  Google Scholar 

  58. Brune A (2018) Methanogens in the digestive tract of termites. In: JHP H (ed) (Endo) symbiotic methanogenic Archaea. Microbiology monographs 19. Springer, Berlin Heidelberg, pp. 81–101

  59. Nauer PA, Hutley LB, Arndt SK (2018) Termite mounds mitigate half of termite methane emissions. Proc. Natl. Acad. Sci. 115(52):13306–13311 201809790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bourguignon T, Lo N, Šobotník J, Ho SY, Iqbal N, Coissac E, Lee M, Jendryka MM, Sillam-Dussès D, Krížková B, Roisin Y, Evans TA (2017) Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol. Biol. Evol. 34(3):589–597

    CAS  PubMed  Google Scholar 

  61. Bucek A, Šobotník J, He S, Shi M, Mc Mahon DP, Holmes EC, Roisin Y, Lo N, Bourguignon T (2019) Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr. Biol. 29(21):3728–3734

    Article  CAS  PubMed  Google Scholar 

  62. Loreto R, Hughes DP (2016) Disease dynamics in ants: a critical review of the ecological relevance of using generalist fungi to study infections in insect societies. In: advances in genetics, vol 94. Elsevier, pp 287-306

  63. Rosengaus RB, Maxmen AB, Coates LE, Traniello JF (1998) Disease resistance: a benefit of sociality in the dampwood termite Zootermopsis angusticollis (Isoptera: Termopsidae). Behav. Ecol. Sociobiol. 44(2):125–134

    Article  Google Scholar 

  64. Chouvenc T, Efstathion CA, Elliott ML, Su N-Y (2012) Resource competition between two fungal parasites in subterranean termites. Naturwissenschaften 99(11):949–958

    Article  CAS  PubMed  Google Scholar 

  65. Myles TG (2002) Observations on mites Acari associated with the eastern subterranean termite, Reticulitermes flavipes Isoptera: Rhinotermitidae. Sociobiology 40(2):277–280

    Google Scholar 

  66. Wang C, Powell JE, O'Connor BM (2002) Mites and nematodes associated with three subterranean termite species (Isoptera: Rhinotermitidae). Fla. Entomol. 85(3):499–506

    Article  Google Scholar 

  67. Matsuura K (2006) Termite-egg mimicry by a sclerotium-forming fungus. Proc. R. Soc. B Biol. Sci. 273(1591):1203–1209

    Article  Google Scholar 

  68. Mitaka Y, Mori N, Matsuura K (2018) A termite fungistatic compound, mellein, inhibits entomopathogenic fungi but not egg-mimicking termite ball fungi. Appl. Entomol. Zool. 54:39–46 1–8

    Article  Google Scholar 

  69. Yashiro T, Matsuura K (2007) Distribution and phylogenetic analysis of termite egg-mimicking fungi “termite balls” in Reticulitermes termites. Ann. Entomol. Soc. Am. 100(4):532–538

    Article  CAS  Google Scholar 

  70. Matsuura K, Tanaka C, Nishida T (2000) Symbiosis of a termite and a sclerotium-forming fungus: sclerotia mimic termite eggs. Ecol. Res. 15(4):405–414

    Article  Google Scholar 

  71. Hughes DP, Pierce NE, Boomsma JJ (2008) Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol. Evol. 23(12):672–677

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Alan Byboth and the Sam Houston State University Center for Biological Field Studies for providing us access to their site to collect termite and soil samples.

Funding

This research was supported by the Urban Entomology Endowment at Texas A&M University.

Author information

Authors and Affiliations

Authors

Contributions

CMA, PAE, TLC, and ELV designed the study. CMA collected and analyzed the data. CMA, PAE, TLC, and ELV wrote the manuscript.

Corresponding author

Correspondence to Pierre-André Eyer.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Supplementary Information

ESM 1

(PDF 926 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguero, C.M., Eyer, PA., Crippen, T.L. et al. Reduced Environmental Microbial Diversity on the Cuticle and in the Galleries of a Subterranean Termite Compared to Surrounding Soil. Microb Ecol 81, 1054–1063 (2021). https://doi.org/10.1007/s00248-020-01664-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01664-w

Keywords

Navigation