Skip to main content

Advertisement

Log in

N-Linked Surface Glycan Biosynthesis, Composition, Inhibition, and Function in Cnidarian-Dinoflagellate Symbiosis

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The success of symbioses between cnidarian hosts (e.g., corals and sea anemones) and micro-algal symbionts hinges on the molecular interactions that govern the establishment and maintenance of intracellular mutualisms. As a fundamental component of innate immunity, glycan-lectin interactions impact the onset of marine endosymbioses, but our understanding of the effects of cell surface glycome composition on symbiosis establishment remains limited. In this study, we examined the canonical N-glycan biosynthesis pathway in the genome of the dinoflagellate symbiont Breviolum minutum (family Symbiodiniaceae) and found it to be conserved with the exception of the transferase GlcNAc-TII (MGAT2). Using coupled liquid chromatography-mass spectrometry (LC-MS/MS), we characterized the cell surface N-glycan content of B. minutum, providing the first insight into the molecular composition of surface glycans in dinoflagellates. We then used the biosynthesis inhibitors kifunensine and swainsonine to alter the glycan composition of B. minutum. Successful high-mannose enrichment via kifunensine treatment resulted in a significant decrease in colonization of the model sea anemone Aiptasia (Exaiptasia pallida) by B. minutum. Hybrid glycan enrichment via swainsonine treatment, however, could not be confirmed and did not impact colonization. We conclude that functional Golgi processing of N-glycans is critical for maintaining appropriate cell surface glycan composition and for ensuring colonization success by B. minutum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. LaJeunesse TC, Parkinson JE, Gabrielson PW et al (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570–2580.e6. https://doi.org/10.1016/j.cub.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  2. Davy SK, Allemand D, Weis VM (2012) Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev 76:229–261. https://doi.org/10.1128/MMBR.05014-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weis VM (2019) Cell biology of coral symbiosis: foundational study can inform solutions to the coral reef crisis. Integr Comp Biol 59(4):845-855. https://doi.org/10.1093/icb/icz067

  4. Bosch TCG (2013) Cnidarian-microbe interactions and the origin of innate immunity in metazoans. Annu Rev Microbiol 67:499–518. https://doi.org/10.1146/annurev-micro-092412-155626

    Article  CAS  PubMed  Google Scholar 

  5. Dunn SR (2009) Immunorecognition and immunoreceptors in the Cnidaria. Invertebr Surviv J 6:7–14

    Google Scholar 

  6. Hamada M, Shoguchi E, Shinzato C, Kawashima T, Miller DJ, Satoh N (2013) The complex NOD-like receptor repertoire of the coral Acropora digitifera includes novel domain combinations. Mol Biol Evol 30:167–176. https://doi.org/10.1093/molbev/mss213

    Article  CAS  PubMed  Google Scholar 

  7. Neubauer E-F, Poole AZ, Neubauer P et al (2017) A diverse host thrombospondin-type-1 repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis. eLife 6. https://doi.org/10.7554/eLife.24494

  8. Poole AZ, Weis VM (2014) TIR-domain-containing protein repertoire of nine anthozoan species reveals coral-specific expansions and uncharacterized proteins. Dev Comp Immunol 46:480–488. https://doi.org/10.1016/j.dci.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  9. McGuinness DH, Dehal PK, Pleass RJ (2003) Pattern recognition molecules and innate immunity to parasites. Trends Parasitol 19:312–319. https://doi.org/10.1016/S1471-4922(03)00123-5

    Article  CAS  PubMed  Google Scholar 

  10. Varki A (2017) Biological roles of glycans. Glycobiology 27:3–49. https://doi.org/10.1093/glycob/cww086

    Article  CAS  PubMed  Google Scholar 

  11. Collins BE, Paulson JC (2004) Cell surface biology mediated by low affinity multivalent protein–glycan interactions. Curr Opin Chem Biol 8:617–625. https://doi.org/10.1016/j.cbpa.2004.10.004

    Article  CAS  PubMed  Google Scholar 

  12. Gallatin WM, Weissman IL, Butcher EC (1983) A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature 304:30–34. https://doi.org/10.1038/304030a0

    Article  CAS  PubMed  Google Scholar 

  13. Pang P-C, Chiu PCN, Lee C-L, Chang LY, Panico M, Morris HR, Haslam SM, Khoo KH, Clark GF, Yeung WS, Dell A (2011) Human sperm binding is mediated by the sialyl-Lewisx oligosaccharide on the zona pellucida. Science 333:1761–1764. https://doi.org/10.1126/science.1207438

    Article  CAS  PubMed  Google Scholar 

  14. Lannoo N, Van Damme EJM (2014) Lectin domains at the frontiers of plant defense. Front Plant Sci 5. https://doi.org/10.3389/fpls.2014.00397

  15. Baum LG, Garner OB, Schaefer K, Lee B (2014) Microbe-host interactions are positively and negatively regulated by galectin-glycan interactions. Front Immunol 5:1–8. https://doi.org/10.3389/fimmu.2014.00284

    Article  CAS  Google Scholar 

  16. Kachko A, Loesgen S, Shahzad-Ul-Hussan S, Tan W, Zubkova I, Takeda K, Wells F, Rubin S, Bewley CA, Major ME (2013) Inhibition of hepatitis C virus by the cyanobacterial protein Microcystis viridis lectin: mechanistic differences between the high-mannose specific lectins MVL, CV-N, and GNA. Mol Pharm 10:4590–4602. https://doi.org/10.1021/mp400399b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kvennefors ECE, Leggat W, Hoegh-Guldberg O, Degnan BM, Barnes AC (2008) An ancient and variable mannose-binding lectin from the coral Acropora millepora binds both pathogens and symbionts. Dev Comp Immunol 32:1582–1592. https://doi.org/10.1016/j.dci.2008.05.010

    Article  CAS  PubMed  Google Scholar 

  18. Zhou Z, Yu X, Tang J et al (2017) Dual recognition activity of a rhamnose-binding lectin to pathogenic bacteria and zooxanthellae in stony coral Pocillopora damicornis. Dev Comp Immunol 70:88–93. https://doi.org/10.1016/j.dci.2017.01.009

    Article  CAS  PubMed  Google Scholar 

  19. Ip WK, Takahashi K, Alan Ezekowitz R, Stuart LM (2009) Mannose-binding lectin and innate immunity. Immunol Rev 230:9–21. https://doi.org/10.1111/j.1600-065X.2009.00789.x

    Article  PubMed  Google Scholar 

  20. van Kooyk Y, Rabinovich GA (2008) Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 9:593–601. https://doi.org/10.1038/ni.f.203

    Article  CAS  PubMed  Google Scholar 

  21. Schwarz JA (2008) Understanding the intracellular niche in cnidarian-Symbiodinium symbioses: parasites lead the way. Vie et Milieu - Life Environ 58:141–151

    Google Scholar 

  22. Bushkin GG, Ratner DM, Cui J, Banerjee S, Duraisingh MT, Jennings CV, Dvorin JD, Gubbels MJ, Robertson SD, Steffen M, O'Keefe BR, Robbins PW, Samuelson J (2010) Suggestive evidence for Darwinian selection against asparagine-linked glycans of Plasmodium falciparum and Toxoplasma gondii. Eukaryot Cell 9:228–241. https://doi.org/10.1128/EC.00197-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fauquenoy S, Morelle W, Hovasse A, Bednarczyk A, Slomianny C, Schaeffer C, van Dorsselaer A, Tomavo S (2008) Proteomics and glycomics analyses of N-glycosylated structures involved in Toxoplasma gondii-host cell interactions. Mol Cell Proteomics 7:891–910. https://doi.org/10.1074/mcp.M700391-MCP200

    Article  CAS  PubMed  Google Scholar 

  24. Samuelson J, Banerjee S, Magnelli P, Cui J, Kelleher DJ, Gilmore R, Robbins PW (2005) The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases. Proc Natl Acad Sci 102:1548–1553. https://doi.org/10.1073/pnas.0409460102

    Article  CAS  PubMed  Google Scholar 

  25. Tasumi S, Vasta GR (2007) A galectin of unique domain organization from hemocytes of the Eastern oyster (Crassostrea virginica) is a receptor for the protistan parasite Perkinsus marinus. J Immunol 179:3086–3098. https://doi.org/10.4049/jimmunol.179.5.3086

    Article  CAS  PubMed  Google Scholar 

  26. Bay LK, Cumbo VR, Abrego D et al (2011) Infection dynamics vary between Symbiodinium types and cell surface treatments during establishment of endosymbiosis with coral larvae. Diversity 3:356–374. https://doi.org/10.3390/d3030356

    Article  CAS  Google Scholar 

  27. Kuniya N, Jimbo M, Tanimoto F, Yamashita H, Koike K, Harii S, Nakano Y, Iwao K, Yasumoto K, Watabe S (2015) Possible involvement of Tachylectin-2-like lectin from Acropora tenuis in the process of Symbiodinium acquisition. Fish Sci 81:473–483. https://doi.org/10.1007/s12562-015-0862-y

    Article  CAS  Google Scholar 

  28. Lin K, Wang J, Fang L-S (2000) Participation of glycoproteins on zooxanthellal cell walls in the establishment of a symbiotic relationship with the sea anemone, Aiptasia pulchella. Zool Stud 39:172–178

  29. Wood-Charlson EM, Hollingsworth LL, Krupp DA, Weis VM (2006) Lectin/glycan interactions play a role in recognition in a coral/dinoflagellate symbiosis. Cell Microbiol 8:1985–1993. https://doi.org/10.1111/j.1462-5822.2006.00765.x

    Article  CAS  PubMed  Google Scholar 

  30. Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049. https://doi.org/10.1146/annurev.biochem.73.011303.073752

    Article  CAS  PubMed  Google Scholar 

  31. Stanley P, Taniguchi N, Aebi M (2015) N-Glycans. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of Glycobiology 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  32. Elbein AD, Tropea JE, Mitchell M, Kaushal GP (1990) Kifunensine, a potent inhibitor of the glycoprotein processing mannosidase I. J Biol Chem 265:15599–15605

    CAS  PubMed  Google Scholar 

  33. Liebminger E, Hüttner S, Vavra U, Fischl R, Schoberer J, Grass J, Blaukopf C, Seifert GJ, Altmann F, Mach L, Strasser R (2009) Class I alpha-mannosidases are required for N-glycan processing and root development in Arabidopsis thaliana. Plant Cell 21:3850–3867. https://doi.org/10.1105/tpc.109.072363

    Article  PubMed  PubMed Central  Google Scholar 

  34. Weng S, Spiro RG (1993) Demonstration that a kifunensine-resistant alpha-mannosidase with a unique processing action on N-linked oligosaccharides occurs in rat liver endoplasmic reticulum and various cultured cells. J Biol Chem 268:25656–25663

    CAS  PubMed  Google Scholar 

  35. Tulsiani DR, Harris TM, Touster O (1982) Swainsonine inhibits the biosynthesis of complex glycoproteins by inhibition of Golgi mannosidase II. J Biol Chem 257:7936–7939

    CAS  PubMed  Google Scholar 

  36. Petersen L, Ardèvol A, Rovira C, Reilly PJ (2010) Molecular mechanism of the glycosylation step catalyzed by Golgi α-mannosidase II: a QM/MM metadynamics investigation. J Am Chem Soc 132:8291–8300. https://doi.org/10.1021/ja909249u

    Article  CAS  PubMed  Google Scholar 

  37. Shah N, Kuntz DA, Rose DR (2008) Golgi-mannosidase II cleaves two sugars sequentially in the same catalytic site. Proc Natl Acad Sci 105:9570–9575. https://doi.org/10.1073/pnas.0802206105

    Article  PubMed  Google Scholar 

  38. Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Mungpakdee S, Koyanagi R, Takeuchi T, Hisata K, Tanaka M, Fujiwara M, Hamada M, Seidi A, Fujie M, Usami T, Goto H, Yamasaki S, Arakaki N, Suzuki Y, Sugano S, Toyoda A, Kuroki Y, Fujiyama A, Medina M, Coffroth MA, Bhattacharya D, Satoh N (2013) Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr Biol 23:1399–1408. https://doi.org/10.1016/j.cub.2013.05.062

    Article  CAS  PubMed  Google Scholar 

  39. Aranda M, Li Y, Liew YJ, Baumgarten S, Simakov O, Wilson MC, Piel J, Ashoor H, Bougouffa S, Bajic VB, Ryu T, Ravasi T, Bayer T, Micklem G, Kim H, Bhak J, LaJeunesse T, Voolstra CR (2016) Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci Rep 6:39734. https://doi.org/10.1038/srep39734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin S, Cheng S, Song B et al (2015) The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science 350:691–694. https://doi.org/10.1126/science.aad0408

    Article  CAS  PubMed  Google Scholar 

  41. Joseph SJ, Fernández-Robledo JA, Gardner MJ, el-Sayed NM, Kuo CH, Schott EJ, Wang H, Kissinger JC, Vasta GR (2010) The Alveolate Perkinsus marinus: biological insights from EST gene discovery. BMC Genomics 11:228. https://doi.org/10.1186/1471-2164-11-228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gardner MJ, Hall N, Fung E et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419(6906):498-511. https://doi.org/10.1038/nature01097

  43. Kissinger JC, Gajria B, Li L, Paulsen IT, Roos DS (2003) ToxoDB: accessing the Toxoplasma gondii genome. Nucleic Acids Res 31:234–236. https://doi.org/10.1093/nar/gkg072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169. https://doi.org/10.1093/nar/gkw1099

    Article  CAS  Google Scholar 

  45. Liew YJ, Aranda M, Voolstra CR (2016) Reefgenomics.Org - a repository for marine genomics data. Database 2016:baw152.

  46. Kersey PJ, Allen JE, Allot A, Barba M, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Grabmueller C, Kumar N, Liu Z, Maurel T, Moore B, McDowall M, Maheswari U, Naamati G, Newman V, Ong CK, Paulini M, Pedro H, Perry E, Russell M, Sparrow H, Tapanari E, Taylor K, Vullo A, Williams G, Zadissia A, Olson A, Stein J, Wei S, Tello-Ruiz M, Ware D, Luciani A, Potter S, Finn RD, Urban M, Hammond-Kosack KE, Bolser DM, de Silva N, Howe KL, Langridge N, Maslen G, Staines DM, Yates A (2018) Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res 46:D802–D808. https://doi.org/10.1093/nar/gkx1011

    Article  CAS  PubMed  Google Scholar 

  47. Di Tommaso P, Moretti S, Xenarios I et al (2011) T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 39:W13–W17. https://doi.org/10.1093/nar/gkr245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217. https://doi.org/10.1006/jmbi.2000.4042

    Article  CAS  PubMed  Google Scholar 

  49. Park C, Meng L, Stanton LH, Collins RE, Mast SW, Yi X, Strachan H, Moremen KW (2005) Characterization of a human core-specific lysosomal α1,6-mannosidase involved in N-glycan catabolism. J Biol Chem 280:37204–37216. https://doi.org/10.1074/jbc.M508930200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dong X, Zhou S, Mechref Y (2016) LC-MS/MS analysis of permethylated free oligosaccharides and N-glycans derived from human, bovine, and goat milk samples. ELECTROPHORESIS 37:1532–1548. https://doi.org/10.1002/elps.201500561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kang P, Mechref Y, Novotny MV (2008) High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun Mass Spectrom 22:721–734. https://doi.org/10.1002/rcm.3395

    Article  CAS  PubMed  Google Scholar 

  52. Zhong J, Banazadeh A, Peng W, Mechref Y (2018) A carbon nanoparticles-based solid-phase purification method facilitating sensitive MALDI–MS analysis of permethylated N-glycans. ELECTROPHORESIS 39:3087–3095. https://doi.org/10.1002/elps.201800254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhu R, Zhou S, Peng W, Huang Y, Mirzaei P, Donohoo K, Mechref Y (2018) Enhanced quantitative LC-MS/MS analysis of N-linked glycans derived from glycoproteins using sodium deoxycholate detergent. J Proteome Res 17:2668–2678. https://doi.org/10.1021/acs.jproteome.8b00127

    Article  CAS  PubMed  Google Scholar 

  54. Yu C-Y, Mayampurath A, Hu Y, Zhou S, Mechref Y, Tang H (2013) Automated annotation and quantification of glycans using liquid chromatography–mass spectrometry. Bioinformatics 29:1706–1707. https://doi.org/10.1093/bioinformatics/btt190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shahzad-ul-Hussan S, Cai M, Bewley CA (2009) Unprecedented glycosidase activity at a lectin carbohydrate-binding site exemplified by the cyanobacterial lectin MVL. J Am Chem Soc 131(45):16500-16508. https://doi.org/10.1021/ja905929c

  56. Matthews JL, Sproles AE, Oakley CA, Grossman AR, Weis VM, Davy SK (2016) Menthol-induced bleaching rapidly and effectively provides experimental aposymbiotic sea anemones (Aiptasia sp.) for symbiosis investigations. J Exp Biol 219:306–310. https://doi.org/10.1242/jeb.128934

    Article  PubMed  Google Scholar 

  57. Parkinson JE, Tivey TR, Mandelare PE et al (2018) Subtle differences in symbiont cell surface glycan profiles do not explain species-specific colonization rates in a model cnidarian-algal symbiosis. Front Microbiol 9:842. https://doi.org/10.3389/fmicb.2018.00842

  58. Baumgarten S, Simakov O, Esherick LY, Liew YJ, Lehnert EM, Michell CT, Li Y, Hambleton EA, Guse A, Oates ME, Gough J, Weis VM, Aranda M, Pringle JR, Voolstra CR (2015) The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc Natl Acad Sci 112:11893–11898. https://doi.org/10.1073/pnas.1513318112

    Article  CAS  PubMed  Google Scholar 

  59. Sunagawa S, Wilson EC, Thaler M, Smith ML, Caruso C, Pringle JR, Weis VM, Medina M, Schwarz JA (2009) Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics 10:258. https://doi.org/10.1186/1471-2164-10-258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu H, Stephens TG, González-Pech RA, Beltran VH, Lapeyre B, Bongaerts P, Cooke I, Aranda M, Bourne DG, Forêt S, Miller DJ, van Oppen MJH, Voolstra CR, Ragan MA, Chan CX (2018) Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis. Commun Biol 1:1-11. https://doi.org/10.1038/s42003-018-0098-3

  61. Davidson EA, Gowda DC (2001) Glycobiology of Plasmodium falciparum. Biochimie 83:601–604. https://doi.org/10.1016/S0300-9084(01)01316-5

    Article  CAS  PubMed  Google Scholar 

  62. von Itzstein M, Plebanski M, Cooke BM, Coppel RL (2008) Hot, sweet and sticky: the glycobiology of Plasmodium falciparum. Trends Parasitol 24:210–218. https://doi.org/10.1016/j.pt.2008.02.007

    Article  CAS  Google Scholar 

  63. Zhou S, Dong X, Veillon L, Huang Y, Mechref Y (2017) LC-MS/MS analysis of permethylated N-glycans facilitating isomeric characterization. Anal Bioanal Chem 409:453–466. https://doi.org/10.1007/s00216-016-9996-8

    Article  CAS  PubMed  Google Scholar 

  64. Logan DDK, LaFlamme AC, Weis VM, Davy SK (2010) Flow-cytometric characterization of the cell-surface glycans of symbiotic dinoflagellates (Symbiodinium spp.). J Phycol 46:525–533. https://doi.org/10.1111/j.1529-8817.2010.00819.x

    Article  CAS  Google Scholar 

  65. Varki A (2008) Sialic acids in human health and disease. Trends Mol Med 14:351–360. https://doi.org/10.1016/j.molmed.2008.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mamedov T, Yusibov V (2011) Green algae Chlamydomonas reinhardtii possess endogenous sialylated N-glycans. FEBS Open Biol 1:15–22. https://doi.org/10.1016/j.fob.2011.10.003

    Article  CAS  Google Scholar 

  67. Stephens TG, Ragan MA, Bhattacharya D, Chan CX (2018) Core genes in diverse dinoflagellate lineages include a wealth of conserved dark genes with unknown functions. Sci Rep:8. https://doi.org/10.1038/s41598-018-35620-z

  68. Warren L (1963) The distribution of sialic acids in nature. Comp Biochem Physiol 10:153–171. https://doi.org/10.1016/0010-406X(63)90238-X

    Article  CAS  PubMed  Google Scholar 

  69. Jimbo M, Suda Y, Koike K et al (2013) Possible involvement of glycolipids in lectin-mediated cellular transformation of symbiotic microalgae in corals. J Exp Mar Biol Ecol 439:129–135. https://doi.org/10.1016/j.jembe.2012.10.022

    Article  CAS  Google Scholar 

  70. Kita A, Jimbo M, Sakai R et al (2015) Crystal structure of a symbiosis-related lectin from octocoral. Glycobiology 25:1016–1023. https://doi.org/10.1093/glycob/cwv033

    Article  CAS  PubMed  Google Scholar 

  71. Fabre C, Causse H, Mourey L et al (1998) Characterization and sugar-binding properties of arcelin-1, an insecticidal lectin-like protein isolated from kidney bean (Phaseolus vulgaris L. cv. RAZ-2) seeds. Biochem J 329:551–560

    Article  CAS  Google Scholar 

  72. Dorling PR, Huxtable CR, Colegate SM (1980) Inhibition of lysosomal alpha-mannosidase by swainsonine, an indolizidine alkaloid isolated from Swainsona canescens. Biochem J 191:649–651. https://doi.org/10.1042/BJ1910649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nyholm SV, McFall-Ngai MJ (2004) The winnowing: establishing the squid-vibrio symbiosis. Nat Rev Microbiol 2:632–642. https://doi.org/10.1038/nrmicro957

    Article  CAS  PubMed  Google Scholar 

  74. Kimura A, Sakaguchi E, Nonaka M (2009) Multi-component complement system of Cnidaria: C3, Bf, and MASP genes expressed in the endodermal tissues of a sea anemone, Nematostella vectensis. Immunobiology 214:165–178. https://doi.org/10.1016/j.imbio.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  75. Meyer E, Weis VM (2012) Study of cnidarian-algal symbiosis in the “omics” age. Biol Bull 223:44–65. https://doi.org/10.1086/BBLv223n1p44

    Article  CAS  PubMed  Google Scholar 

  76. Wood-Charlson EM, Weis VM (2009) The diversity of C-type lectins in the genome of a basal metazoan, Nematostella vectensis. Dev Comp Immunol 33:881–889. https://doi.org/10.1016/j.dci.2009.01.008

    Article  CAS  PubMed  Google Scholar 

  77. Poole AZ, Kitchen SA, Weis VM (2016) The role of complement in cnidarian-dinoflagellate symbiosis and immune challenge in the sea anemone Aiptasia pallida. Front Microbiol 7:519. https://doi.org/10.3389/fmicb.2016.00519

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kvennefors ECE, Leggat W, Kerr CC, Ainsworth TD, Hoegh-Guldberg O, Barnes AC (2010) Analysis of evolutionarily conserved innate immune components in coral links immunity and symbiosis. Dev Comp Immunol 34:1219–1229. https://doi.org/10.1016/j.dci.2010.06.016

    Article  CAS  PubMed  Google Scholar 

  79. Detournay O, Schnitzler CE, Poole A, Weis VM (2012) Regulation of cnidarian–dinoflagellate mutualisms: evidence that activation of a host TGFB innate immune pathway promotes tolerance of the symbiont. Dev Comp Immunol 38:525–537. https://doi.org/10.1016/j.dci.2012.08.008

    Article  CAS  PubMed  Google Scholar 

  80. Mansfield KM, Carter NM, Nguyen L, Cleves PA, Alshanbayeva A, Williams LM, Crowder C, Penvose AR, Finnerty JR, Weis VM, Siggers TW, Gilmore TD (2017) Transcription factor NF-κB is modulated by symbiotic status in a sea anemone model of cnidarian bleaching. Sci Rep 7:1–14. https://doi.org/10.1038/s41598-017-16168-w

    Article  CAS  Google Scholar 

  81. Merselis DG, Lirman D, Rodriguez-Lanetty M (2018) Symbiotic immuno-suppression: is disease susceptibility the price of bleaching resistance? PeerJ 6:e4494. https://doi.org/10.7717/peerj.4494

    Article  PubMed  PubMed Central  Google Scholar 

  82. Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369. https://doi.org/10.1126/science.291.5512.2364

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Shumpei Maruyama, Sarah Howey, Milan Sengthrep, Tyler Coleman, Kyle Petersen, Darian Thompson, and Kenneth Moller for their assistance in algal and animal maintenance. In addition, we thank Allison Ehrlich, Jamie Pennington, and the Environmental and Molecular Toxicology Department at Oregon State University for technical support in flow cytometry.

Funding

This research was funded by the National Science Foundation (NSF IOS-1557804 to V.M.W and S.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Trevor R. Tivey or Sandra Loesgen.

Electronic Supplementary Material

ESM 1

(DOCX 7086 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tivey, T.R., Parkinson, J.E., Mandelare, P.E. et al. N-Linked Surface Glycan Biosynthesis, Composition, Inhibition, and Function in Cnidarian-Dinoflagellate Symbiosis. Microb Ecol 80, 223–236 (2020). https://doi.org/10.1007/s00248-020-01487-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01487-9

Keywords

Navigation