Skip to main content
Log in

Fungal Communities of the Canola Rhizosphere: Keystone Species and Substantial Between-Year Variation of the Rhizosphere Microbiome

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Rhizosphere microbes influence one another, forming extremely complex webs of interactions that may determine plant success. Identifying the key factors that structure the fungal microbiome of the plant rhizosphere is a necessary step in optimizing plant production. In a long-term field experiment conducted at three locations in the Canadian prairies, we tested the following hypotheses: (1) diversification of cropping systems influences the fungal microbiome of the canola (Brassica napus) rhizosphere; (2) the canola rhizosphere has a core fungal microbiome, i.e., a set of fungi always associated with canola; and (3) some taxa within the rhizosphere microbiome of canola are highly interrelated and fit the description of hub taxa. Our results show that crop diversification has a significant effect on the structure of the rhizosphere fungal community but not on fungal diversity. We also discovered and described a canola core microbiome made up of one zero-radius operational taxonomic unit (ZOTU), cf. Olpidium brassicae, and an eco-microbiome found only in 2013 consisting of 47 ZOTUs. Using network analysis, we identified four hub taxa in 2013: ZOTU14 (Acremonium sp.), ZOTU28 (Sordariomycetes sp.), ZOTU45 (Mortierella sp.) and ZOTU179 (cf. Ganoderma applanatum), and one hub taxon, ZOTU17 (cf. Mortierella gamsii) in 2016. None of these most interacting taxa belonged to the core microbiome or eco-microbiome for each year of sampling. This temporal variability puts into question the idea of a plant core fungal microbiome and its stability. Our results provide a basis for the development of ecological engineering strategies for the improvement of canola production systems in Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annual review of plant biology. Annual Reviews, Palo Alto, pp 233–266

    Google Scholar 

  2. Tkacz A, Cheema J, Chandra G, Grant A, Poole PS (2015) Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J 9:2349–2359. https://doi.org/10.1038/ismej.2015.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pii Y, Borruso L, Brusetti L, Crecchio C, Cesco S, Mimmo T (2016) The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome. Plant Physiol Biochem 99:39–48. https://doi.org/10.1016/j.plaphy.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  4. Garbaye J (1994) Helper bacteria - a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210. https://doi.org/10.1111/j.1469-8137.1994.tb04003.x

    Article  Google Scholar 

  5. van der Heijden MG, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752. https://doi.org/10.1111/j.1469-8137.2006.01862.x

    Article  PubMed  Google Scholar 

  6. Doehlemann G, Requena N, Schaefer P, Brunner F, O’Connell R, Parker JE (2014) Reprogramming of plant cells by filamentous plant-colonizing microbes. New Phytol 204:803–814. https://doi.org/10.1111/nph.12938

    Article  PubMed  Google Scholar 

  7. Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471. https://doi.org/10.1016/j.tim.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  8. Latz E, Eisenhauer N, Rall BC, Scheu S, Jousset A (2016) Unravelling linkages between plant community composition and the pathogen-suppressive potential of soils. Sci Rep 6:23584. https://doi.org/10.1038/srep23584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mozafar A, Anken T, Ruh R, Frossard E (2000) Tillage intensity, mycorrhizal and nonmycorrhizal fungi, and nutrient concentrations in maize, wheat, and canola. Agron J 92:1117. https://doi.org/10.2134/agronj2000.9261117x

    Article  CAS  Google Scholar 

  10. Bulgarelli D, Schlaeppi K, Spaepen S, ver Loren van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838. https://doi.org/10.1146/annurev-arplant-050312-120106

    Article  CAS  PubMed  Google Scholar 

  11. van der Heijden MG, de Bruin S, Luckerhoff L, van Logtestijn R, Schlaeppi K (2016) A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J 10:389–399. https://doi.org/10.1038/ismej.2015.120

    Article  CAS  PubMed  Google Scholar 

  12. Vandenkoornhuyse P, Quaiser A, Duhamel M, le van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206. https://doi.org/10.1111/nph.13312

    Article  PubMed  Google Scholar 

  13. Rout ME (2014). Plant Microbiome 69:279–309. https://doi.org/10.1016/b978-0-12-417163-3.00011-1

    Article  CAS  Google Scholar 

  14. Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:e1002352. https://doi.org/10.1371/journal.pbio.1002352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Taktek S, St-Arnaud M, Piché Y, Fortin JA, Antoun H (2017) Igneous phosphate rock solubilization by biofilm-forming mycorrhizobacteria and hyphobacteria associated with Rhizoglomus irregulare DAOM 197198. Mycorrhiza 27:13–22. https://doi.org/10.1007/s00572-016-0726-z

    Article  CAS  PubMed  Google Scholar 

  16. Hajishengallis G, Darveau RP, Curtis MA (2012) The keystone-pathogen hypothesis. Nat Rev Microbiol 10:717–725. https://doi.org/10.1038/nrmicro2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Raaijmakers JM, Paulitz TC, Steinberg C et al (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361. https://doi.org/10.1007/s11104-008-9568-6

    Article  CAS  Google Scholar 

  18. Lay C-Y, Bell TH, Hamel C et al (2018) Canola root–associated microbiomes in the canadian prairies. Front Microbiol:9. https://doi.org/10.3389/fmicb.2018.01188

  19. Zheng ZT, Pei FC, Jiang LP, Fu CQ (2014) Synthesis and characterization of canola oil-based polyisocyanates. In: Adv Mater Res. https://www.scientific.net/AMR.955-959.802. Accessed 15 Jul 2018

  20. Rumberger A, Marschner P (2003) 2-Phenylethylisothiocyanate concentration and microbial community composition in the rhizosphere of canola. Soil Biol Biochem 35:445–452. https://doi.org/10.1016/s0038-0717(02)00296-1

    Article  CAS  Google Scholar 

  21. Harker KN, O’Donovan JT, Turkington TK et al (2015) Canola rotation frequency impacts canola yield and associated pest species. Can J Plant Sci 95:9–20. https://doi.org/10.4141/cjps-2014-289

    Article  Google Scholar 

  22. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  23. Dorn-In S, Hölzel CS, Janke T et al (2013) PCR-SSCP-based reconstruction of the original fungal flora of heat-processed meat products. Int J Food Microbiol 162:71–81. https://doi.org/10.1016/j.ijfoodmicro.2012.12.022

    Article  CAS  PubMed  Google Scholar 

  24. McCune B, Mefford MJ (2011) PC-ORD multivariate analysis of ecological data. Version 6

  25. Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA (2015) Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol 11:e1004226. https://doi.org/10.1371/journal.pcbi.1004226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Teakle DS (1960) Association of Olpidium brassicae and tobacco necrosis virus. Nature 188:431–432. https://doi.org/10.1038/188431a0

    Article  Google Scholar 

  27. Campbell RN, Sim ST (1994) Host specificity and nomenclature of Olpidium bornovanus (= Olpidium radicale) and comparisons to Olpidium brassicae. Can J Bot 72:1136–1143

    Article  Google Scholar 

  28. Campbell RN, Sim ST, Lecoq H (1995) Virus transmission by host-specific strains of Olpidium bornovanus and Olpidium brassicae. Eur J Plant Pathol 101:273–282. https://doi.org/10.1007/BF01874783

    Article  Google Scholar 

  29. Sekimoto S, Rochon D, Long JE et al (2011) A multigene phylogeny of Olpidium and its implications for early fungal evolution. BMC Evol Biol 11:331

    Article  CAS  Google Scholar 

  30. Hilton S, Bennett AJ, Keane G et al (2013) Impact of shortened crop rotation of oilseed rape on soil and rhizosphere microbial diversity in relation to yield decline. PLoS ONE:8. https://doi.org/10.1371/journal.pone.0059859

  31. Lay C-Y, Hamel C, St-Arnaud M (2018) Taxonomy and pathogenicity of Olpidium brassicae and its allied species. Fungal Biol 122:837–846. https://doi.org/10.1016/j.funbio.2018.04.012

    Article  PubMed  Google Scholar 

  32. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750. https://doi.org/10.3732/ajb.1200572

    Article  PubMed  Google Scholar 

  33. Edwards J, Johnson C, Santos-Medellin C et al (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A 112:E911–E920. https://doi.org/10.1073/pnas.1414592112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, North G, Visel A, Partida-Martinez LP, Tringe SG (2016) Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol 209:798–811. https://doi.org/10.1111/nph.13697

    Article  CAS  PubMed  Google Scholar 

  35. Siciliano SD, Theoret CM, de Freitas JR et al (1998) Differences in the microbial communities associated with the roots of different cultivars of canola and wheat. Can J Microbiol 44:844–851. https://doi.org/10.1139/w98-075

    Article  CAS  Google Scholar 

  36. Gan Y, Hamel C, O’Donovan JT et al (2015) Diversifying crop rotations with pulses enhances system productivity. Sci Rep 5:14625. https://doi.org/10.1038/srep14625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Smith EG, Kutcher HR, Brandt SA et al (2013) The profitability of short-duration canola and pea rotations in Western Canada. Can J Plant Sci 93:933–940. https://doi.org/10.4141/cjps2013-021

    Article  Google Scholar 

  38. Larkin RP (2003) Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biol Biochem 35:1451–1466. https://doi.org/10.1016/s0038-0717(03)00240-2

    Article  CAS  Google Scholar 

  39. Larkin RP, Honeycutt CW (2006) Effects of different 3-year cropping systems on soil microbial communities and rhizoctonia diseases of potato. Phytopathology 96:68–79. https://doi.org/10.1094/PHYTO-96-0068

    Article  PubMed  Google Scholar 

  40. Bennett AJ, Hilton S, Bending GD, Chandler D, Mills P (2014) Impact of fresh root material and mature crop residues of oilseed rape (Brassica napus) on microbial communities associated with subsequent oilseed rape. Biol Fertil Soils 50:1267–1279. https://doi.org/10.1007/s00374-014-0934-7

    Article  CAS  Google Scholar 

  41. Gkarmiri K, Mahmood S, Ekblad A et al (2017) Identifying the active microbiome associated with roots and rhizosphere soil of oilseed rape. Appl Environ Microbiol 83:e01938–e01917. https://doi.org/10.1128/AEM.01938-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schmitt A, Glaser B (2011) Organic matter dynamics in a temperate forest soil following enhanced drying. Soil Biol Biochem 43:478–489. https://doi.org/10.1016/j.soilbio.2010.09.037

    Article  CAS  Google Scholar 

  43. Wang N, Wang M, Li S et al (2015) Effects of precipitation variation on growing seasonal dynamics of soil microbial biomass in broadleaved Korean pine mixed forest. Ying Yong Sheng Tai Xue Bao J Appl Ecol 26:1297–1305

    CAS  Google Scholar 

  44. Zhang F-G, Zhang Q-G (2016) Microbial diversity limits soil heterotrophic respiration and mitigates the respiration response to moisture increase. Soil Biol Biochem 98:180–185. https://doi.org/10.1016/j.soilbio.2016.04.017

    Article  CAS  Google Scholar 

  45. Ochoa-Hueso R, Collins SL, Delgado-Baquerizo M et al (2018) Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Glob Chang Biol 24:2818–2827. https://doi.org/10.1111/gcb.14113

    Article  PubMed  Google Scholar 

  46. James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter D, Powell MJ, Griffith GW, Vilgalys R (2006) A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98:860–871. https://doi.org/10.1080/15572536.2006.11832616

    Article  PubMed  Google Scholar 

  47. Toberman H, Freeman C, Evans C, Fenner N, Artz RR (2008) Summer drought decreases soil fungal diversity and associated phenol oxidase activity in upland Calluna heathland soil. FEMS Microbiol Ecol 66:426–436. https://doi.org/10.1111/j.1574-6941.2008.00560.x

    Article  CAS  PubMed  Google Scholar 

  48. Florinsky IV, Eilers RG, Manning GR, Fuller LG (2002) Prediction of soil properties by digital terrain modelling. Environ Model Softw 17:295–311. https://doi.org/10.1016/S1364-8152(01)00067-6

    Article  Google Scholar 

  49. de Campos SB, Youn JW, Farina R, Jaenicke S, Jünemann S, Szczepanowski R, Beneduzi A, Vargas LK, Goesmann A, Wendisch VF, Passaglia LM (2013) Changes in root bacterial communities associated to two different development stages of canola (Brassica napus L. var oleifera) evaluated through next-generation sequencing technology. Microb Ecol 65:593–601. https://doi.org/10.1007/s00248-012-0132-9

    Article  CAS  PubMed  Google Scholar 

  50. Wagner MR, Lundberg DS, Coleman-Derr D et al (2015) Corrigendum to Wagneret al.: natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol Lett 18:218–220. https://doi.org/10.1111/ele.12400

    Article  Google Scholar 

  51. Barnes CJ, van der Gast CJ, Burns CA et al (2016) Temporally variable geographical distance effects contribute to the assembly of root-associated fungal communities. Front Microbiol:7. https://doi.org/10.3389/fmicb.2016.00195

  52. Fernandez MR (2007) Fusarium populations in roots of oilseed and pulse crops grown in eastern Saskatchewan. Can J Plant Sci 87:945–952

    Article  Google Scholar 

  53. Fernandez M, Huber D, Basnyat P, Zentner R (2008) Impact of agronomic practices on populations of Fusarium and other fungi in cereal and noncereal crop residues on the Canadian prairies. Soil Tillage Res 100:60–71. https://doi.org/10.1016/j.still.2008.04.008

    Article  Google Scholar 

  54. Hamel C, Vujanovic V, Jeannotte R et al (2005) Negative feedback on a perennial crop: fusarium crown and root rot of asparagus is related to changes in soil microbial community structure. Plant Soil 268:75–87. https://doi.org/10.1007/s11104-004-0228-1

    Article  CAS  Google Scholar 

  55. Vujanovic V, Hamel C, Yergeau E, St-Arnaud M (2006) Biodiversity and biogeography of fusarium species from northeastern North American asparagus fields based on microbiological and molecular approaches. Microb Ecol 51:242–255. https://doi.org/10.1007/s00248-005-0046-x

    Article  PubMed  Google Scholar 

  56. Yergeau E, Sommerville DW, Maheux E, Vujanovic V, Hamel C, Whalen JK, St-Arnaud M (2006) Relationships between fusarium population structure, soil nutrient status and disease incidence in field-grown asparagus:fusarium ecology in asparagus fields. FEMS Microbiol Ecol 58:394–403. https://doi.org/10.1111/j.1574-6941.2006.00161.x

    Article  CAS  PubMed  Google Scholar 

  57. Abdellatif L, Fernandez MR, Bouzid S, Vujanovic V (2010) Characterization of virulence and PCR-DGGE profiles of Fusarium avenaceum from Western Canadian prairie ecozone of Saskatchewan. Can J Plant Pathol 32:468–480. https://doi.org/10.1080/07060661.2010.510643

    Article  CAS  Google Scholar 

  58. Lievens B, Rep M, Thomma BP (2008) Recent developments in the molecular discrimination of formae speciales of Fusarium oxysporum. Pest Manag Sci 64:781–788. https://doi.org/10.1002/ps.1564

    Article  CAS  PubMed  Google Scholar 

  59. Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16. https://doi.org/10.2307/1943155

    Article  Google Scholar 

  60. Jumpponen ARI, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310. https://doi.org/10.1046/j.1469-8137.1998.00265.x

    Article  Google Scholar 

  61. Xia Y, DeBolt S, Dreyer J, Scott D, Williams MA (2015) Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Front Plant Sci 6:490. https://doi.org/10.3389/fpls.2015.00490

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hermosa MR, Grondona I, Iturriaga EA, Diaz-Minguez JM, Castro C, Monte E, Garcia-Acha I (2000) Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Appl Environ Microbiol 66:1890–1898. https://doi.org/10.1128/AEM.66.5.1890-1898.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hirpara DG, Gajera HP, Hirapara JG, Golakiya BA (2017) Inhibition coefficient and molecular diversity of multi stress tolerant Trichoderma as potential biocontrol agent against Sclerotium rolfsii Sacc. Infect Genet Evol 55:75–92. https://doi.org/10.1016/j.meegid.2017.08.029

    Article  PubMed  Google Scholar 

  64. Jalali F, Zafari D, Salari H (2017) Volatile organic compounds of some Trichoderma spp. increase growth and induce salt tolerance in Arabidopsis thaliana. Fungal Ecol 29:67–75. https://doi.org/10.1016/j.funeco.2017.06.007

    Article  Google Scholar 

  65. Yang J, Tian B, Liang L, Zhang K-Q (2007) Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl Microbiol Biotechnol 75:21–31. https://doi.org/10.1007/s00253-007-0881-4

    Article  CAS  PubMed  Google Scholar 

  66. Vega FE, Posada F, Catherine Aime M et al (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82. https://doi.org/10.1016/j.biocontrol.2008.01.008

    Article  Google Scholar 

  67. Jumpponen A (2001) Dark septate endophytes - are they mycorrhizal? Mycorrhiza 11:207–211. https://doi.org/10.1007/s005720100112

    Article  Google Scholar 

  68. Zhang Q, Gong M, Yuan J et al (2017) Dark septate endophyte improves drought tolerance in sorghum. Int J Agric Biol 19:53–60. https://doi.org/10.17957/IJAB/15.0241

    Article  CAS  Google Scholar 

  69. Thormann MN, Currah RS, Bayley SE (2004) Patterns of distribution of microfungi in decomposing bog and fen plants. Can J Bot 82:710–720

    Article  Google Scholar 

  70. Gudiño Gomezjurado ME, de Abreu LM, Marra LM et al (2015) Phosphate solubilization by several genera of saprophytic fungi and its influence on corn and cowpea growth. J Plant Nutr 38:675–686. https://doi.org/10.1080/01904167.2014.934480

    Article  CAS  Google Scholar 

  71. Peng X, Qiu M (2018) Meroterpenoids from ganoderma species: a review of last five years. Nat Prod Bioprospect 8:137–149. https://doi.org/10.1007/s13659-018-0164-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hood IA, McDougal RL, Somchit C et al (2018) Fungi decaying the wood of fallen beech (Nothofagus) trees in the South Island of New Zealand. Can J For Res 49:1–17. https://doi.org/10.1139/cjfr-2018-0179

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Mario Laterrière and David Gagné for their assistance with the bio-informatic analysis and thank the technical staff of the AAFC research centers in Lacombe, Lethbridge and Scott for carrying out the sampling and providing useful advice.

Funding

This study received funding from the following sources: the Agricultural Bioproducts Innovation Program (ABIP), the Prairie Canola Agronomic Research Program (PCARP), the Agriculture and Agri-Food Canada Canada Canola Cluster Growing Forward Initiative, the Alberta Canola Producers Commission, the Saskatchewan Canola Development Commission, the Manitoba Canola Growers Association, the Canola Council of Canada, the Western Grains Research Foundation, and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc St-Arnaud.

Electronic Supplementary Material

Figure S1

Cumulative precipitation proportion at each site in 2013 and 2016. The fungal communities in the canola rhizosphere may have been influenced by moisture availability in July 2016. (PNG 55 kb)

High resolution image (EPS 1234 kb)

Figure S2

Rarefaction curves for each rhizosphere soil sample, showing the relationship between the number of ZOTUs and the abundance of ITS sequences reads, in the 2013 dataset. The vertical black line indicates the plateau threshold for all curves. (PNG 152 kb)

High resolution image (EPS 7997 kb)

Figure S3

Rarefaction curves for each rhizosphere soil sample, showing the relationship between the number of ZOTUs and the abundance of ITS sequences reads, in the 2016 dataset. The vertical black line indicates the plateau threshold for all curves. (PNG 166 kb)

High resolution image (EPS 4188 kb)

ESM 1

(DOCX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Floc’h, JB., Hamel, C., Harker, K.N. et al. Fungal Communities of the Canola Rhizosphere: Keystone Species and Substantial Between-Year Variation of the Rhizosphere Microbiome. Microb Ecol 80, 762–777 (2020). https://doi.org/10.1007/s00248-019-01475-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01475-8

Keywords

Navigation