Skip to main content
Log in

Altering the Gut Microbiome of Cattle: Considerations of Host-Microbiome Interactions for Persistent Microbiome Manipulation

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The beef cattle industry represents a significant portion of the USA’s agricultural sect, with beef cattle accounting for the most red meat consumed in the USA. Feed represents the largest input cost in the beef industry, accounting for approximately 70% of total input cost. Given that, novel methods need to be employed to optimize feed efficiency in cattle to reduce monetary cost as well as environmental cost associated with livestock industries, such as methane production and nitrogen release into the environment. The rumen microbiome contributes to feed efficiency by breaking down low-quality feedstuffs into energy substrates that can subsequently be utilized by the host animal. Attempts to manipulate the rumen microbiome have been met with mixed success, though persistent changes have not yet been achieved beyond changing diet. Recent technological advances have made analyzing host-wide effects of the rumen microbiome possible, as well as provided finer resolution of those effects. This manuscript reviews contributing factors to the rumen microbiome establishment or re-establishment following rumen microbiome perturbation, as well as host-microbiome interactions that may be responsible for possible host specificity of the rumen microbiome. Understanding and accounting for the variety of factors contributing to rumen microbiome establishment or re-establishment in cattle will ultimately lead to identification of biomarkers of feed efficiency that will result in improved selection criteria, as well as aid to determine methods for persistent microbiome manipulation to optimize production phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mathews K, McBride W (2011) The diverse structure and organization of US beef cow-calf farms. US Department of Agriculture, Economic Research Service. Economic Information Bulletin, Washington, DC

    Google Scholar 

  2. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA Working paper FAO, Rome

  3. Johnson KA, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73(8):2483–2492

    Article  CAS  PubMed  Google Scholar 

  4. Crutzen PJ, Aselmann I, Seiler W (1986) Methane production by domestic animals, wild ruminants, other herbivorous fauna, and humans. Tellus B 38(3–4):271–284

    Article  Google Scholar 

  5. Alemu AW, Ominski K, Kebreab E (2011) Estimation of enteric methane emissions trends (1990-2008) from Manitoba beef cattle using empirical and mechanistic models. Can J Anim Sci 91(2):305–321

    Article  Google Scholar 

  6. Seymour W, Campbell D, Johnson Z (2005) Relationships between rumen volatile fatty acid concentrations and milk production in dairy cows: a literature study. Anim Feed Sci Technol 119(1):155–169

    Article  CAS  Google Scholar 

  7. Weston R, Hogan J (1968) The digestion of pasture plants by sheep. I. Ruminal production of volatile fatty acids by sheep offered diets of ryegrass and forage oats. Aust J Agric Res 19(3):419–432

    Article  CAS  Google Scholar 

  8. Houpt TR (1970) Transfer of urea and ammonia to the rumen. Physiology of Digestion and Metabolism in the Ruminant 119–131

  9. Kempton T, Nolan J, Leng R (1977) Principles for the use of non-protein nitrogen and by-pass proteins in diets of ruminants. World Animal Review

  10. Myer PR, Wells JE, Smith TPL, Kuehn LA, Freetly HC (2017) Analysis of the gut bacterial communities in beef cattle and their association with feed intake, growth, and efficiency. J Anim Sci 95. https://doi.org/10.2527/jas2016.1059

  11. Khafipour E, Li S, Plaizier JC, Krause DO (2009) Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Appl Environ Microbiol 75(22):7115–7124. https://doi.org/10.1128/aem.00739-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shi W, Moon CD, Leahy SC, Kang D, Froula J, Kittelmann S, Fan C, Deutsch S, Gagic D, Seedorf H, Kelly WJ, Atua R, Sang C, Soni P, Li D, Pinares-Patiño CS, McEwan JC, Janssen PH, Chen F, Visel A, Wang Z, Attwood GT, Rubin EM (2014) Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res 24(9):1517–1525. https://doi.org/10.1101/gr.168245.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hungate R (1975) The rumen microbial ecosystem. Annu Rev Ecol Syst 6:39–66

    Article  CAS  Google Scholar 

  14. Zhou M, Hernandez-Sanabria E, Guan LL (2009) Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl Environ Microbiol 75(20):6524–6533. https://doi.org/10.1128/aem.02815-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shabat SKB, Sasson G, Doron-Faigenboim A, Durman T, Yaacoby S, Miller MEB, White BA, Shterzer N, Mizrahi I (2016) Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J 10:2958–2972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mao SY, Huo WJ, Zhu WY (2016) Microbiome–metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model. Environ Microbiol 18(2):525–541

    Article  CAS  PubMed  Google Scholar 

  17. Morgavi DP, Rathahao-Paris E, Popova M, Boccard J, Nielsen KF, Boudra H (2015) Rumen microbial communities influence metabolic phenotypes in lambs. Front Microbiol 6(1060). https://doi.org/10.3389/fmicb.2015.01060

  18. Henderson G, Cox F, Ganesh S, Jonker A, Young W, Collaborators GRC, Janssen PH (2015) Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 5

  19. Weimer PJ, Stevenson DM, Mantovani HC, Man SLC (2010) Host specificity of the ruminal bacterial community in the dairy cow following near-total exchange of ruminal contents. J Dairy Sci 93(12):5902–5912. https://doi.org/10.3168/jds.2010-3500

    Article  CAS  PubMed  Google Scholar 

  20. Hook SE, Northwood KS, Wright A-D, McBride BW (2009) Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Appl Environ Microbiol 75(2):374–380

    Article  CAS  PubMed  Google Scholar 

  21. Ghorbani GR, Morgavi DP, Beauchemin KA, Leedle JAZ (2002) Effects of bacterial direct-fed microbials on ruminal fermentation, blood variables, and the microbial populations of feedlot cattle. J Anim Sci 80(7):1977–1985. https://doi.org/10.2527/2002.8071977x

    Article  CAS  PubMed  Google Scholar 

  22. Weimer PJ (2015) Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations. Front Microbiol 6

  23. Nagaraja T (2016) Microbiology of the rumen. In: Rumenology. Springer, pp 39–61

  24. Creevey CJ, Kelly WJ, Henderson G, Leahy SC (2014) Determining the culturability of the rumen bacterial microbiome. Microb Biotechnol 7(5):467–479. https://doi.org/10.1111/1751-7915.12141

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fernando SC, Purvis H, Najar F, Sukharnikov L, Krehbiel C, Nagaraja T, Roe B, DeSilva U (2010) Rumen microbial population dynamics during adaptation to a high-grain diet. Appl Environ Microbiol 76(22):7482–7490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McCann JC, Luan S, Cardoso FC, Derakhshani H, Khafipour E, Loor JJ (2016) Induction of subacute ruminal acidosis affects the ruminal microbiome and epithelium. Front Microbiol 7:701

    PubMed  PubMed Central  Google Scholar 

  27. Myer PR, Smith TP, Wells JE, Kuehn LA, Freetly HC (2015) Rumen microbiome from steers differing in feed efficiency. PLoS One 10(6):e0129174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stevenson DM, Weimer PJ (2007) Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 75(1):165–174. https://doi.org/10.1007/s00253-006-0802-y

    Article  CAS  PubMed  Google Scholar 

  29. Avguštin G, Wallace RJ, Flint HJ (1997) Phenotypic diversity among ruminal isolates of Prevotella ruminicola: proposal of Prevotella brevis sp. nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov. and redefinition of Prevotella ruminicola. Int J Syst Evol Microbiol 47(2):284–288

    Google Scholar 

  30. Henderson G, Cox F, Ganesh S, Jonker A, Young W, Abecia L, Angarita E, Aravena P, Arenas GN, Ariza C (2015) Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 5:14567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jami E, White BA, Mizrahi I (2014) Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One 9(1):e85423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Petri R, Schwaiger T, Penner G, Beauchemin K, Forster R, McKinnon J, McAllister T (2013) Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis. Appl Environ Microbiol 79(12):3744–3755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lima FS, Oikonomou G, Lima SF, Bicalho ML, Ganda EK, de Oliveira Filho JC, Lorenzo G, Trojacanec P, Bicalho RC (2015) Prepartum and postpartum rumen fluid microbiomes: characterization and correlation with production traits in dairy cows. Appl Environ Microbiol 81(4):1327–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484 http://www.nature.com/nature/journal/v457/n7228/suppinfo/nature07540_S1.html

    Article  CAS  PubMed  Google Scholar 

  35. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102(31):11070–11075. https://doi.org/10.1073/pnas.0504978102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rodríguez F (2003) Control of lactate accumulation in ruminants using Prevotella bryantii

  37. Russell JB, Hino T (1985) Regulation of lactate production in Streptococcus bovis: a spiraling effect that contributes to rumen acidosis. J Dairy Sci 68(7):1712–1721

    Article  CAS  PubMed  Google Scholar 

  38. Tajima K, Arai S, Ogata K, Nagamine T, Matsui H, Nakamura M, Aminov RI, Benno Y (2000) Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe 6(5):273–284

    Article  CAS  Google Scholar 

  39. Nagaraja T, Titgemeyer E (2007) Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook. J Dairy Sci 90:E17–E38

    Article  PubMed  Google Scholar 

  40. Bekele AZ, Koike S, Kobayashi Y (2010) Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA gene-based analysis. FEMS Microbiol Lett 305(1):49–57. https://doi.org/10.1111/j.1574-6968.2010.01911.x

    Article  CAS  PubMed  Google Scholar 

  41. Pitta DW, Pinchak WE, Dowd SE, Osterstock J, Gontcharova V, Youn E, Dorton K, Yoon I, Min BR, Fulford JD, Wickersham TA, Malinowski DP (2010) Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets. Microb Ecol 59(3):511–522. https://doi.org/10.1007/s00248-009-9609-6

    Article  PubMed  Google Scholar 

  42. Anderson CL, Schneider C, Erickson G, MacDonald J, Fernando SC (2016) Rumen bacterial communities can be acclimated faster to high concentrate diets than currently implemented feedlot programs. J Appl Microbiol 120(3):588–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thoetkiattikul H, Mhuantong W, Laothanachareon T, Tangphatsornruang S, Pattarajinda V, Eurwilaichitr L, Champreda V (2013) Comparative analysis of microbial profiles in cow rumen fed with different dietary fiber by tagged 16S rRNA gene pyrosequencing. Curr Microbiol 67(2):130–137. https://doi.org/10.1007/s00284-013-0336-3

    Article  CAS  PubMed  Google Scholar 

  44. Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3(4):213–223. https://doi.org/10.1016/j.chom.2008.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smith P, Bustamante M (2014) Climate change 2014: mitigation of climate change. In: Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change, ch 11. Cambridge University Press, Cambridge, pp 811–922

  46. Zhou M, Hernandez-Sanabria E, Guan LL (2010) Characterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysis. Appl Environ Microbiol 76(12):3776–3786. https://doi.org/10.1128/aem.00010-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wright A-DG, Williams AJ, Winder B, Christophersen CT, Rodgers SL, Smith KD (2004) Molecular diversity of rumen methanogens from sheep in Western Australia. Appl Environ Microbiol 70(3):1263–1270. https://doi.org/10.1128/aem.70.3.1263-1270.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Popova M, Martin C, Eugène M, Mialon MM, Doreau M, Morgavi DP (2011) Effect of fibre- and starch-rich finishing diets on methanogenic Archaea diversity and activity in the rumen of feedlot bulls. Anim Feed Sci Technol 166-167:113–121. https://doi.org/10.1016/j.anifeedsci.2011.04.060

    Article  CAS  Google Scholar 

  49. Moss AR, Givens DI, Garnsworthy PC (1995) The effect of supplementing grass silage with barley on digestibility, in sacco degradability, rumen fermentation and methane production in sheep at two levels of intake. Anim Feed Sci Technol 55(1):9–33. https://doi.org/10.1016/0377-8401(95)00799-S

    Article  Google Scholar 

  50. Hindrichsen I, Wettstein H-R, Machmüller A, Soliva C, Bach Knudsen K, Madsen J, Kreuzer M (2004) Effects of feed carbohydrates with contrasting properties on rumen fermentation and methane release in vitro. Can J Anim Sci 84(2):265–276

    Article  Google Scholar 

  51. Wallace RJ, Rooke JA, McKain N, Duthie C-A, Hyslop JJ, Ross DW, Waterhouse A, Watson M, Roehe R (2015) The rumen microbial metagenome associated with high methane production in cattle. BMC Genomics 16(1):839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hristov AN, Ivan M, Rode LM, McAllister TA (2001) Fermentation characteristics and ruminal ciliate protozoal populations in cattle fed medium- or high-concentrate barley-based diets. J Anim Sci 79(2):515–524. https://doi.org/10.2527/2001.792515x

    Article  CAS  PubMed  Google Scholar 

  53. Dehority B, Orpin C (1997) Development of, and natural fluctuations in, rumen microbial populations. In: The rumen microbial ecosystem. Springer, pp 196–245

  54. Franzolin R, Dehority B (1996) Effect of prolonged high-concentrate feeding on ruminal protozoa concentrations. J Anim Sci 74(11):2803–2809

    Article  CAS  PubMed  Google Scholar 

  55. Bauchop T (1979) Rumen anaerobic fungi of cattle and sheep. Appl Environ Microbiol 38(1):148–158

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Orpin CG, Joblin KN (1997) The rumen anaerobic fungi. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem. Springer Netherlands, Dordrecht, pp 140–195. https://doi.org/10.1007/978-94-009-1453-7_4

    Chapter  Google Scholar 

  57. Grenet E, Breton A, Barry P, Fonty G (1989) Rumen anaerobic fungi and plant substrate colonization as affected by diet composition. Anim Feed Sci Technol 26(1–2):55–70

    Article  Google Scholar 

  58. Orpin C (1977) The rumen flagellate Piromonas communis: its life-history and invasion of plant material in the rumen. Microbiology 99(1):107–117

    CAS  Google Scholar 

  59. Fonty G, Gouet P, Jouany J-P, Senaud J (1987) Establishment of the microflora and anaerobic fungi in the rumen of lambs. Microbiology 133(7):1835–1843

    Article  Google Scholar 

  60. Schelling GT (1984) Monensin mode of action in the rumen. J Anim Sci 58(6):1518–1527

    Article  CAS  PubMed  Google Scholar 

  61. Perry TW, Beeson WM, Mohler MT (1976) Effect of monensin on beef cattle performance. J Anim Sci 42(3):761–765. https://doi.org/10.2527/jas1976.423761x

    Article  CAS  Google Scholar 

  62. Tomkins NW, Denman SE, Pilajun R, Wanapat M, McSweeney CS, Elliott R (2015) Manipulating rumen fermentation and methanogenesis using an essential oil and monensin in beef cattle fed a tropical grass hay. Anim Feed Sci Technol 200:25–34. https://doi.org/10.1016/j.anifeedsci.2014.11.013

    Article  CAS  Google Scholar 

  63. Griffin SG, Wyllie SG, Markham JL, Leach DN (1999) The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr J 14(5):322–332

    Article  CAS  Google Scholar 

  64. Sikkema J, de Bont JA, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269(11):8022–8028

    CAS  PubMed  Google Scholar 

  65. Ultee A, Kets E, Smid E (1999) Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 65(10):4606–4610

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ultee A, Bennik M, Moezelaar R (2002) The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 68(4):1561–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Calsamiglia S, Busquet M, Cardozo P, Castillejos L, Ferret A (2007) Invited review: essential oils as modifiers of rumen microbial fermentation. J Dairy Sci 90(6):2580–2595

    Article  CAS  PubMed  Google Scholar 

  68. Macheboeuf D, Morgavi DP, Papon Y, Mousset JL, Arturo-Schaan M (2008) Dose–response effects of essential oils on in vitro fermentation activity of the rumen microbial population. Anim Feed Sci Technol 145(1):335–350. https://doi.org/10.1016/j.anifeedsci.2007.05.044

    Article  CAS  Google Scholar 

  69. Beauchemin K, McGinn S (2006) Methane emissions from beef cattle: effects of fumaric acid, essential oil, and canola oil. J Anim Sci 84(6):1489–1496

    Article  CAS  PubMed  Google Scholar 

  70. Callaway TR, Dowd SE, Edrington TS, Anderson RC, Krueger N, Bauer N, Kononoff PJ, Nisbet DJ (2010) Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tag-encoded FLX amplicon pyrosequencing. J Anim Sci 88(12):3977–3983. https://doi.org/10.2527/jas.2010-2900

    Article  CAS  PubMed  Google Scholar 

  71. Maroune M, Bartos S (1987) Interactions between rumen amylolytic and lactate-utilizing bacteria in growth on starch. J Appl Microbiol 63(3):233–238

    Google Scholar 

  72. Beharka AA, Nagaraja TG, Morrill JL (1991) Performance and ruminal function development of young calves fed diets with Aspergillus oryzae fermentation extract. J Dairy Sci 74(12):4326–4336. https://doi.org/10.3168/jds.S0022-0302(91)78628-1

    Article  CAS  PubMed  Google Scholar 

  73. Lesmeister KE, Heinrichs AJ, Gabler MT (2004) Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal dairy calves. J Dairy Sci 87(6):1832–1839. https://doi.org/10.3168/jds.S0022-0302(04)73340-8

    Article  CAS  PubMed  Google Scholar 

  74. Chaucheyras-Durand F, Walker ND, Bach A (2008) Effects of active dry yeasts on the rumen microbial ecosystem: past, present and future. Anim Feed Sci Technol 145(1):5–26. https://doi.org/10.1016/j.anifeedsci.2007.04.019

    Article  CAS  Google Scholar 

  75. Ribeiro GO, Oss DB, He Z, Gruninger RJ, Elekwachi C, Forster RJ, Yang W, Beauchemin KA, McAllister TA (2017) Repeated inoculation of cattle rumen with bison rumen contents alters the rumen microbiome and improves nitrogen digestibility in cattle. Sci Rep 7(1):1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li RW, Connor EE, Li C, Baldwin VIRL, Sparks ME (2012) Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ Microbiol 14(1):129–139. https://doi.org/10.1111/j.1462-2920.2011.02543.x

    Article  CAS  PubMed  Google Scholar 

  77. Rey M, Enjalbert F, Combes S, Cauquil L, Bouchez O, Monteils V (2014) Establishment of ruminal bacterial community in dairy calves from birth to weaning is sequential. J Appl Microbiol 116(2):245–257. https://doi.org/10.1111/jam.12405

    Article  CAS  PubMed  Google Scholar 

  78. Meale SJ, Li S, Azevedo P, Derakhshani H, Plaizier JC, Khafipour E, Steele MA (2016) Development of ruminal and fecal microbiomes are affected by weaning but not weaning strategy in dairy calves. Front Microbiol 7:582. https://doi.org/10.3389/fmicb.2016.00582

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jami E, Israel A, Kotser A, Mizrahi I (2013) Exploring the bovine rumen bacterial community from birth to adulthood. ISME J 7(6):1069–1079

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fluharty FL, Loerch SC, Dehority BA (1994) Ruminal characteristics, microbial populations, and digestive capabilities of newly weaned, stressed calves. J Anim Sci 72(11):2969–2979. https://doi.org/10.2527/1994.72112969x

    Article  CAS  PubMed  Google Scholar 

  81. Yáñez-Ruiz DR, Macías B, Pinloche E, Newbold CJ (2010) The persistence of bacterial and methanogenic archaeal communities residing in the rumen of young lambs. FEMS Microbiol Ecol 72(2):272–278. https://doi.org/10.1111/j.1574-6941.2010.00852.x

    Article  CAS  PubMed  Google Scholar 

  82. Malmuthuge N, Li M, Goonewardene LA, Oba M, Guan LL (2013) Effect of calf starter feeding on gut microbial diversity and expression of genes involved in host immune responses and tight junctions in dairy calves during weaning transition. J Dairy Sci 96(5):3189–3200. https://doi.org/10.3168/jds.2012-6200

    Article  CAS  PubMed  Google Scholar 

  83. Meale SJ, Li SC, Azevedo P, Derakhshani H, DeVries TJ, Plaizier JC, Steele MA, Khafipour E (2017) Weaning age influences the severity of gastrointestinal microbiome shifts in dairy calves. Sci Rep 7:198. https://doi.org/10.1038/s41598-017-00223-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hernandez-Sanabria E, Goonewardene LA, Wang Z, Zhou M, Moore SS, Guan LL (2013) Influence of sire breed on the interplay among rumen microbial populations inhabiting the rumen liquid of the progeny in beef cattle. PLoS One 8(3):e58461. https://doi.org/10.1371/journal.pone.0058461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, Zhang M, Oh PL, Nehrenberg D, Hua K, Kachman SD, Moriyama EN, Walter J, Peterson DA, Pomp D (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci 107(44):18933–18938. https://doi.org/10.1073/pnas.1007028107

    Article  PubMed  PubMed Central  Google Scholar 

  86. Goodrich Julia K, Waters Jillian L, Poole Angela C, Sutter Jessica L, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell Jordana T, Spector Timothy D, Clark Andrew G, Ley Ruth E (2014) Human genetics shape the gut microbiome. Cell 159(4):789–799. https://doi.org/10.1016/j.cell.2014.09.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Goodrich Julia K, Davenport Emily R, Beaumont M, Jackson Matthew A, Knight R, Ober C, Spector Tim D, Bell Jordana T, Clark Andrew G, Ley Ruth E (2016) Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19(5):731–743. https://doi.org/10.1016/j.chom.2016.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Donoghue K, Bird-Gardiner T, Arthur P, Herd R, Hegarty R (2016) Genetic and phenotypic variance and covariance components for methane emission and postweaning traits in Angus cattle. J Anim Sci 94(4):1438–1445

    Article  CAS  PubMed  Google Scholar 

  89. Gonzalez-Recio O, Zubiria I, Garcia-Rodriguez A, Hurtado A, Atxaerandio R (2017) Signs of host genetic regulation in the microbiome composition in cattle. bioRxiv 100966

  90. Mohammed SA, Rahamtalla SA, Ahmed SS, Dousa BM (2014) DGAT1 gene in dairy cattle: a review. Global J Anim Sci Res 3(1):191–198

    Google Scholar 

  91. Grisart B, Farnir F, Karim L, Cambisano N, Kim J-J, Kvasz A, Mni M, Simon P, Frere J-M, Coppieters W (2004) Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proc Natl Acad Sci U S A 101(8):2398–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gonzalez-Recio O, Zubiria I, Garcia-Rodriguez A, Hurtado A, Atxaerandio R (2017) Signs of host genetic regulation in the microbiome composition in cattle. bioRxiv. https://doi.org/10.1101/100966

  93. Ma J, Coarfa C, Qin X, Bonnen PE, Milosavljevic A, Versalovic J, Aagaard K (2014) mtDNA haplogroup and single nucleotide polymorphisms structure human microbiome communities. BMC Genomics 15(1):257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Weimer PJ, Cox MS, de Paula TV, Lin M, Hall MB, Suen G (2017) Transient changes in milk production efficiency and bacterial community composition resulting from near-total exchange of ruminal contents between high- and low-efficiency Holstein cows. J Dairy Sci 100:7165–7182

    Article  CAS  PubMed  Google Scholar 

  96. Carey DA, Caton JS, Biondini M (1993) Influence of energy source on forage intake, digestibility, in situ forage degradation, and ruminal fermentation in beef steers fed medium-quality brome hay. J Anim Sci 71(8):2260–2269. https://doi.org/10.2527/1993.7182260x

    Article  CAS  PubMed  Google Scholar 

  97. McCollum F, Galyean M (1985) Influence of cottonseed meal supplementation on voluntary intake, rumen fermentation and rate of passage of prairie hay in beef steers. J Anim Sci 60(2):570–577

    Article  Google Scholar 

  98. Fulton W, Klopfenstein T, Britton R (1979) Adaptation to high concentrate diets by beef cattle. II. Effect of ruminal ph alteration on rumen fermentation and voluntary intake of wheat diets. J Anim Sci 49(3):785–789

    Article  CAS  Google Scholar 

  99. Brown M, Ponce C, Pulikanti R (2006) Adaptation of beef cattle to high-concentrate diets: performance and ruminal metabolism. J Anim Sci 84(13_suppl):E25–E33

    Article  PubMed  Google Scholar 

  100. Bergman E (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70(2):567–590

    Article  CAS  PubMed  Google Scholar 

  101. Van Houtert M (1993) The production and metabolism of volatile fatty acids by ruminants fed roughages: a review. Anim Feed Sci Technol 43(3–4):189–225

    Article  Google Scholar 

  102. Doreau M, Ferlay A (1994) Digestion and utilisation of fatty acids by ruminants. Anim Feed Sci Technol 45(3–4):379–396

    Article  CAS  Google Scholar 

  103. Fontanesi L (2016) Merging metabolomics, genetics, and genomics in livestock to dissect complex production traits. In: Systems biology in animal production and health, Vol. 1. Springer, pp 43–62

  104. Monteiro M, Carvalho M, Bastos M, Guedes de Pinho P (2013) Metabolomics analysis for biomarker discovery: advances and challenges. Curr Med Chem 20(2):257–271

    Article  CAS  PubMed  Google Scholar 

  105. Ametaj BN (2015) A systems veterinary approach in understanding transition cow diseases: Metabolomics In: Proceedings of the 4th international symposium on dairy cow nutrition and milk quality, session 1, advances in fundamental research. pp 78–85

  106. Karisa B, Thomson J, Wang Z, Li C, Montanholi Y, Miller S, Moore S, Plastow G (2014) Plasma metabolites associated with residual feed intake and other productivity performance traits in beef cattle. Livest Sci 165:200–211

    Article  Google Scholar 

  107. Clemmons BA, Mihelic RI, Beckford RC, Powers JB, Melchior EA, McFarlane ZD, Cope ER, Embree MM, Mulliniks JT, Campagna SR (2017) Serum metabolites associated with feed efficiency in black angus steers. Metabolomics 13(12):147

    Article  CAS  Google Scholar 

  108. Sun H-Z, Wang D-M, Wang B, Wang J-K, Liu H-Y, Guan LL, Liu J-X (2015) Metabolomics of four biofluids from dairy cows: potential biomarkers for milk production and quality. J Proteome Res 14(2):1287–1298

    Article  CAS  PubMed  Google Scholar 

  109. Artegoitia VM, Foote AP, Lewis RM, Freetly HC (2017) Rumen fluid metabolomics analysis associated with feed efficiency on crossbred steers. Sci Rep 7:2864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhao S, Zhao J, Bu D, Sun P, Wang J, Dong Z (2014) Metabolomics analysis reveals large effect of roughage types on rumen microbial metabolic profile in dairy cows. Lett Appl Microbiol 59(1):79–85

    Article  CAS  PubMed  Google Scholar 

  111. Aardema MJ, MacGregor JT (2002) Toxicology and genetic toxicology in the new era of “toxicogenomics”: impact of “-omics” technologies. Mutat Res Fundam Mol Mech Mutagen 499(1):13–25

    Article  CAS  Google Scholar 

  112. Desai C, Pathak H, Madamwar D (2010) Advances in molecular and “-omics” technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Bioresour Technol 101(6):1558–1569

    Article  CAS  PubMed  Google Scholar 

  113. Davis CD, Hord NG (2005) Nutritional “omics” technologies for elucidating the role (s) of bioactive food components in colon cancer prevention. J Nutr 135(11):2694–2697

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the United States Department of Agriculture, National Institute of Food and Agriculture Hatch/Multistate Project W2010-TEN00493, Integrated Approach to Enhance Efficiency of Feed Utilization in Beef Production Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip R. Myer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clemmons, B.A., Voy, B.H. & Myer, P.R. Altering the Gut Microbiome of Cattle: Considerations of Host-Microbiome Interactions for Persistent Microbiome Manipulation. Microb Ecol 77, 523–536 (2019). https://doi.org/10.1007/s00248-018-1234-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-018-1234-9

Keywords

Navigation