Skip to main content
Log in

Exploring the Abundance and Diversity of Bacterial Communities and Quantifying Antibiotic-Related Genes Along an Elevational Gradient in Taibai Mountain, China

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Thus far, no studies have investigated the soil microbial diversity over an elevational gradient in Taibai Mountain, the central massif of the Qinling Mountain Range. Here, we used Illumina sequencing and quantitative PCR of the 16S rRNA gene to assess the diversity and abundance of bacterial communities along an elevational gradient in representative vegetation soils in Taibai Mountain. We identified the soil, climate, and vegetation factors driving the variations in soil bacterial community structure by Pearson correlation and redundancy analysis. We also evaluated the potential for antibiotic discovery by quantitative PCR of the PKS-I, PKS-II, and NRPS genes from Actinobacteria. The results showed that soil bacterial alpha diversity increased first and then decreased with an elevational rise in both the northern and southern slopes of Taibai Mountain. The bacterial abundance was significantly correlated with soil organic matter and nitrate nitrogen. The average relative abundance of Actinobacteria in Taibai Mountain was markedly higher than those in other mountain forest soils. The absolute abundance of PKS and NPRS gene was significantly higher in the tested soils compared with the gene copy numbers reported in tropical urban soils. Taibai Mountain is rich in actinomycete resources and has great potential for antibiotic excavation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siles JA, Margesin R (2016) Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: what are the driving factors? Microb Ecol 72(1):207–220. https://doi.org/10.1007/s00248-016-0748-2

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL (2008) Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci U S A 105:11505–11511. https://doi.org/10.1073/pnas.0801920105

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fierer N, Mccain CM, Meir P et al (2011) Microbes do not follow the elevational diversity patterns of plants and animals. Ecology 92:797–804. https://doi.org/10.1890/10-1170.1

    Article  PubMed  Google Scholar 

  4. Yasir M, Azhar EI, Khan I, Bibi F, Baabdullah R, al-Zahrani IA, al-Ghamdi AK (2015) Composition of soil microbiome along elevation gradients in southwestern highlands of Saudi Arabia. BMC Microbiol 15(1):65. https://doi.org/10.1186/s12866-015-0398-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meng H, Li K, Nie M, Wan JR, Quan ZX, Fang CM, Chen JK, Gu JD, Li B (2013) Responses of bacterial and fungal communities to an elevation gradient in a subtropical montane forest of China. Appl Microbiol Biotechnol 97(5):2219–2230. https://doi.org/10.1007/s00253-012-4063-7

    Article  CAS  PubMed  Google Scholar 

  6. Singh D, Lee-Cruz L, Kim WS et al (2014) Strong elevational trends in soil bacterial community composition on Mt. Halla, South Korea. Soil Biol Biochem 68(1):140–149. https://doi.org/10.1016/j.soilbio.2013.09.027

    Article  CAS  Google Scholar 

  7. Shen C, Xiong J, Zhang H et al (2013) Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol Biochem 57:204–211. https://doi.org/10.1016/j.soilbio.2012.07.013

    Article  CAS  Google Scholar 

  8. Singh D, Takahashi K, Kim M, Chun J, Adams JM (2012) A hump-backed trend in bacterial diversity with elevation on Mount Fuji, Japan. Microb Ecol 63(2):429–437. https://doi.org/10.1007/s00248-011-9900-1

    Article  PubMed  Google Scholar 

  9. Shanmugam SG, Magbanua ZV, Williams MA, Jangid K, Whitman WB, Peterson DG, Kingery WL (2017) Bacterial diversity patterns differ in soils developing in sub-tropical and cool-temperate ecosystems. Microb Ecol 73(3):1–14. https://doi.org/10.1007/s00248-016-0909-3

    Article  Google Scholar 

  10. Korner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22(11):569–574. https://doi.org/10.1016/j.tree.2007.09.006

    Article  PubMed  Google Scholar 

  11. Wang JT, Cao P, Hu HW, Li J, Han LL, Zhang LM, Zheng YM, He JZ (2015) Altitudinal distribution patterns of soil bacterial and archaeal communities along mt. Shegyla on the Tibetan Plateau. Microb Ecol 69(1):135–145. https://doi.org/10.1007/s00248-014-0465-7

    Article  PubMed  Google Scholar 

  12. Prescott CE, Grayston SJ (2013) Tree species influence on microbial communities in litter and soil: current knowledge and research needs. For Ecol Manag 309(4):19–27. https://doi.org/10.1016/j.foreco.2013.02.034

    Article  Google Scholar 

  13. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten W, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304(5677):1629–1633. https://doi.org/10.1126/science.1094875

    Article  CAS  PubMed  Google Scholar 

  14. Wang H, Liu H, Liu Y, Cui H, Abrahamsen N (2010) Mineral magnetism and other characteristics of sediments from an alpine lake (3,410 m a.s.l.) in central China and implications for late Holocene climate and environment. J Paleolimnol 43(2):345–367. https://doi.org/10.1007/s10933-009-9335-6

    Article  Google Scholar 

  15. Ma XP, Bai HY, Guo S et al (2017) Verification of temperature vertical lapse rate and mountain climate characteristics of Taibai Mountains in Qinling Mountains. J Arid Land Resourc Environ (China) 7(31):141–144. https://doi.org/10.13448/j.cnki.jalre.2017.226

    Article  Google Scholar 

  16. Zhu WJ, Xue QH, Cao YR, Xue L, Shen GH, Lai HX (2011) Distribution and characteristics of soil antagonistic actinomycetes on northern slope of Taibai Mountain, Qinling. Chin J Appl Ecol 22(11):3003–3010. https://doi.org/10.13287/j.1001-9332.2011.0419

    Article  CAS  Google Scholar 

  17. Lauber CL, Hamady M, Knight R et al (2009) Pyrosequencingbased assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 5(15):5111. https://doi.org/10.1128/AEM.00335-09

    Article  CAS  Google Scholar 

  18. Will C, Thürmer A, Wollherr A et al (2010) Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes. Appl Environ Microbiol 76(20):6751–6759. https://doi.org/10.1128/AEM.01063-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mohammadipanah F, Wink J (2016) Actinobacteria from arid and desert habitats: diversity and biological activity. Front Microbiol 6(251):1541. https://doi.org/10.3389/fmicb.2015.01541

    Article  PubMed  PubMed Central  Google Scholar 

  20. Abdelmohsen UR, Yang C, Horn H, Hajjar D, Ravasi T, Hentschel U (2014) Actinomycetes from Red Sea sponges: sources for chemical and phylogenetic diversity. Mar Drugs 12(5):2771–2789. https://doi.org/10.3390/md12052771

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kaluzhnaya OV, Itskovich VB (2016) Distinctive features of the microbial diversity and the polyketide synthase genes spectrum in the community of the endemic Baikal sponge Swartschewskia papyracea. Russ J Genet 52(1):38–48. https://doi.org/10.1134/s1022795416010099

    Article  CAS  Google Scholar 

  22. Undabarrena A, Beltrametti F, Claverias FP et al (2016) Exploring the diversity and antimicrobial potential of marine actinobacteria from the Comau Fjord in Northern Patagonia, Chile. Front Microbiol 7:1135. https://doi.org/10.3389/fmicb.2016.01135

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gonzalez I, Ayuso-Sacido A, Anderson A et al (2005) Actinomycetes isolated from lichens: evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol Ecol 54(3):401–415. https://doi.org/10.1016/j.femsec.2005.05.004

    Article  CAS  PubMed  Google Scholar 

  24. Le TH, Sivachidambaram V, Yi X et al (2014) Quantification of polyketide synthase genes in tropical urban soils using real-time PCR. J Microbiol Methods 106:135–142. https://doi.org/10.1016/j.mimet.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  25. Hristova KR, Lutenegger CM, Scow KM (2001) Detection and quantification of methyl tert-butyl ether-degrading strain PM1 by real-time TaqMan PCR. Appl Environ Microbiol 67(11):5154–5160. https://doi.org/10.1128/AEM.67.11.5154-5160.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang H, Peng C, Lai HX et al (2017) Study on method of actinomycetes isolation from soils of Taibai mountain and its ecological distribution. Agric Res Arid Areas (China). https://doi.org/10.7606/j.issn.1000-7601.2017.05.16

  27. Ayuso-Sacido A, Genilloud O (2005) New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb Ecol 49(1):10–24. https://doi.org/10.1007/s00248-004-0249-6

    Article  CAS  PubMed  Google Scholar 

  28. Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71(7):4117–4120. https://doi.org/10.1128/AEM.71.7.4117-4120.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun W, Qian X, Gu J, Wang XJ, Zhang L, Guo AY (2017) Mechanisms and effects of arsanilic acid on antibiotic resistance genes and microbial communities during pig manure digestion. Bioresour Technol 234:217–223. https://doi.org/10.1016/j.biortech.2017.03.025

    Article  CAS  PubMed  Google Scholar 

  30. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998. https://doi.org/10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  31. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  Google Scholar 

  32. Maidak BL, Olsen GJ, Larsen N, Overbeek R, McCaughey MJ, Woese CR (1997) The RDP (ribosomal database project). Nucleic Acids Res 25:109–110. https://doi.org/10.1093/nar/25.1.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6(12):e27310. https://doi.org/10.1371/journal.pone.0027310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sheik CS, Mitchell TW, Rizvi FZ, Rehman Y, Faisal M, Hasnain S, McInerney MJ, Krumholz LR (2012) Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS One 7(6):e40059. https://doi.org/10.1371/journal.pone.0040059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jami E, Israel A, Kotser A, Mizrahi I (2013) Exploring the bovine rumen bacterial community from birth to adulthood. ISME J 7(6):1069–1079. https://doi.org/10.1038/ismej

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fouts DE, Szpakowski S, Purushe J, Torralba M, Waterman RC, MacNeil MD, Alexander LJ, Nelson KE (2012) Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLoS One 7(11):e48289. https://doi.org/10.1371/journal.pone.0048289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li Y, Wen H, Chen L, Yin T (2014) Succession of bacterial community structure and diversity in soil along a chronosequence of reclamation and re-vegetation on coal mine spoils in China. PLoS One 9(12):e115024. https://doi.org/10.1371/journal.pone.0115024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Upchurch R, Chiu CY, Everett K, Dyszynski G, Coleman DC, Whitman WB (2008) Differences in the composition and diversity of bacterial communities from agricultural and forest soils. Soil Biol Biochem 40(6):1294–1305. https://doi.org/10.1016/j.soilbio.2007.06.027

    Article  CAS  Google Scholar 

  39. Khan SA, Mulvaney RL, Ellsworth TR, Boast CW (2007) The myth of nitrogen fertilization for soil carbon sequestration. J Environ Qual 36(6):1821. https://doi.org/10.2134/jeq2007.0099

    Article  CAS  PubMed  Google Scholar 

  40. Yang Y, Ying G, Wang S et al (2014) The microbial gene diversity along an elevation gradient of the Tibetan grassland. ISME J 8(2):430–440. https://doi.org/10.1038/ismej.2013.146

    Article  CAS  PubMed  Google Scholar 

  41. Smith JL, Halvorson JJ, Bolton Jr H (2002) Soil properties and microbial activity across a 500 m elevation gradient in a semi-arid environment. Soil Biol Biochem 34(11):1749–1757. https://doi.org/10.1016/S0038-0717(02)00162-1

    Article  CAS  Google Scholar 

  42. Lin YT, Whitman WB, Coleman DC, Chen TH, Chiu CY (2014) Composition of bacterial communities in sand dunes of subtropical coastal forests. Biol Fertil Soils 50(5):809–814. https://doi.org/10.1007/s00374-014-0900-4

    Article  Google Scholar 

  43. Zhang Y, Cong J, Lu H, Li G, Qu Y, Su X, Zhou J, Li D (2014) Community structure and elevational diversity patterns of soil Acidobacteria. J Environ Sci (China) 26(8):1717–1724. https://doi.org/10.1016/j.jes.2014.06.012

    Article  CAS  Google Scholar 

  44. Williams KP, Gillespie JJ, Sobral BWS, Nordberg EK, Snyder EE, Shallom JM, Dickerman AW (2010) Phylogeny of gammaproteobacteria. J Bacteriol 192(9):2305–2314. https://doi.org/10.1128/JB.01480-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antib (Tokyo) 62(1):5–16. https://doi.org/10.1038/ja.2008.16

    Article  CAS  Google Scholar 

  46. Stroobants A, Degrune F, Olivier C, Muys C, Roisin C, Colinet G, Bodson B, Portetelle D, Vandenbol M (2014) Diversity of bacterial communities in a profile of a winter wheat field: known and unknown members. Microb Ecol 68(4):822–833. https://doi.org/10.1007/s00248-014-0458-6

    Article  CAS  PubMed  Google Scholar 

  47. Atoyan JA, Staroscik AM, Nelson DR, Patenaude E, Potts D, Amador J (2013) Microbial community structure of a leachfield soil: response to intermittent aeration and tetracycline addition. Water 5(2):505–524. https://doi.org/10.3390/w5020505

    Article  CAS  Google Scholar 

  48. Navarro-Noya YE, Gómez-Acata S, Montoya-Ciriaco N, Rojas-Valdez A, Suárez-Arriaga MC, Valenzuela-Encinas C, Jiménez-Bueno N, Verhulst N, Govaerts B, Dendooven L (2013) Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biol Biochem 65:86–95. https://doi.org/10.1016/j.soilbio.2013.05.009

    Article  CAS  Google Scholar 

  49. Sims A, Horton J, Gajaraj S, McIntosh S, Miles RJ, Mueller R, Reed R, Hu Z (2012) Temporal and spatial distributions of ammonia-oxidizing archaea and bacteria and their ratio as an indicator of oligotrophic conditions in natural wetlands. Water Res 46(13):4121–4129. https://doi.org/10.1016/j.watres.2012.05.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank the two corresponding authors, especially Dr. Xiaomin Wei who made more contribution to the guidance in field measurements and paper writing. We thank Dr. Chaofeng Lin (Transcend Envirotech Consulting Co., Ltd, Qingdao, China) for improving the English of the manuscript.

Funding

This work was supported by the National Sci-Tech Support Plan of China (2012BAD14B11), the Shaanxi Science & Technology Co-ordination & Innovation Project (2016KTZDNY03-03-02), and Fundamental Research Funds for the Central Universities (2452017313).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hangxian Lai or Xiaomin Wei.

Electronic supplementary material

Table S3

(XLSX 51 kb)

ESM 1

(DOC 592 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Wang, H., Jiang, Y. et al. Exploring the Abundance and Diversity of Bacterial Communities and Quantifying Antibiotic-Related Genes Along an Elevational Gradient in Taibai Mountain, China. Microb Ecol 76, 1053–1062 (2018). https://doi.org/10.1007/s00248-018-1197-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-018-1197-x

Keywords

Navigation