Skip to main content
Log in

The Role of Iron Competition in the Antagonistic Action of the Rice Endophyte Streptomyces sporocinereus OsiSh-2 Against the Pathogen Magnaporthe oryzae

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Rice blast caused by Magnaporthe oryzae severely impacts global rice yield stability. The rice endophyte Streptomyces sporocinereus OsiSh-2, with strong antagonistic activity towards M. oryzae, has been reported in our previous study. To decipher the model of the antagonistic action of OsiSh-2 towards M. oryzae, we compared the iron-capturing abilities of these two strains. The cultivation of OsiSh-2 and a M. oryzae strain under iron-rich and iron-starved conditions showed that M. oryzae depended more on iron supplementation for growth and development than did OsiSh-2. Genomic analysis of the S. sporocinereus and M. oryzae species strains revealed that they might possess different iron acquisition strategies. The actinobacterium OsiSh-2 is likely to favor siderophore utilization compared to the fungus M. oryzae. In addition, protein annotations found that OsiSh-2 contains the highest number of the siderophore biosynthetic gene clusters among the 13 endophytic actinomycete strains and 13 antifungal actinomycete strains that we compared, indicating the prominent siderophore production potential of OsiSh-2. Additionally, we verified that OsiSh-2 could excrete considerably more siderophores than Guy11 under iron-restricted conditions and displayed greater Fe3+-reducing activity during iron-supplemental conditions. Measurements of the iron mobilization between the antagonistic OsiSh-2 and Guy11 showed that the iron concentration is higher around OsiSh-2 than around Guy11. In addition, adding iron near OsiSh-2 could decrease the antagonism of OsiSh-2 towards Guy11. Our study revealed that the antagonistic capacity displayed by OsiSh-2 towards M. oryzae was related to the competition for iron. The highly efficient iron acquisition system of OsiSh-2 may offer valuable insight for the biocontrol of rice blast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wilson RA, Talbot NJ (2009) Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol 7(3):185–195

    Article  CAS  Google Scholar 

  2. Ebbole DJ (2007) Magnaporthe as a model for understanding host-pathogen interactions. Annu. Rev. Phytopathol. 45(1):437–456

    Article  CAS  Google Scholar 

  3. Miah G, Rafii M, Ismail M, Puteh A, Rahim H, Asfaliza R, Latif M (2013) Blast resistance in rice: a review of conventional breeding to molecular approaches. Mol. Biol. Rep. 40(3):2369–2388

    Article  CAS  Google Scholar 

  4. Gnanamanickam SS (2009) Biological control of rice diseases. Springer, Dordrecht, Netherlands

    Book  Google Scholar 

  5. Xu T, Li Y, Zeng X, Yang X, Yang Y, Yuan S, Hu X, Zeng J, Wang Z, Liu Q (2017) Isolation and evaluation of endophytic Streptomyces endus OsiSh-2 with potential application for biocontrol of rice blast disease. J. Sci. Food Agric. 97(4):1149–1157

    Article  CAS  Google Scholar 

  6. Araujo R, Kaewkla O, Franco CM (2017) Endophytic actinobacteria: beneficial partners for sustainable agriculture. Endophytes: Biology and Biotechnology

    Google Scholar 

  7. Su Z, Mao L, Li N, Feng X, Yuan Z, Wang L, Lin F, Zhang C (2013) Evidence for biotrophic lifestyle and biocontrol potential of dark septate endophyte Harpophora oryzae to rice blast disease. PLoS One 8(4):e61332

    Article  CAS  Google Scholar 

  8. Keerthana U, Nagendran K, Raguchander T, Prabakar K, Rajendran L, Karthikeyan G (2017) Deciphering the role of Bacillus subtilis var. amyloliquefaciens in the management of late blight pathogen of potato, Phytophthora infestans. P Natl A Sci India B 2017:1–10

  9. Dutta D, Puzari KC, Gogoi R, Dutta P (2014) Endophytes: exploitation as a tool in plant protection. Braz Arch Biol Techn 57(5):621–629

    Article  Google Scholar 

  10. El-Tarabily K, Nassar A, Hardy GSJ, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J. Appl. Microbiol. 106(1):13–26

    Article  CAS  Google Scholar 

  11. Cao L, Qiu Z, You J, Tan H, Zhou S (2005) Isolation and characterization of endophytic streptomycete antagonists of fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol. Lett. 247(2):147–152

    Article  CAS  Google Scholar 

  12. Arias AA, Lambert S, Martinet L, Adam D, Tenconi E, Hayette M-P, Ongena M, Rigali S (2015) Growth of desferrioxamine-deficient Streptomyces mutants through xenosiderophore piracy of airborne fungal contaminations. FEMS Microbiol. Ecol. 91(7):1–9

    Article  Google Scholar 

  13. Schaible UE, Kaufmann SH (2004) Iron and microbial infection. Nat Rev Microbiol 2(12):946–953

    Article  CAS  Google Scholar 

  14. Haas H, Eisendle M, Turgeon BG (2008) Siderophores in fungal physiology and virulence. Annu. Rev. Phytopathol. 46:149–187

    Article  CAS  Google Scholar 

  15. Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microb 65(12):5357–5363

    CAS  Google Scholar 

  16. O'sullivan DJ, O'Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 56(4):662–676

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Traxler MF, Seyedsayamdost MR, Clardy J, Kolter R (2012) Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol. Microbiol. 86(3):628–644

    Article  CAS  Google Scholar 

  18. Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant Microbe In 4(1):5–13

    Article  CAS  Google Scholar 

  19. Askwith C, Kaplan J (1997) An oxidase-permease-based iron transport system in Schizosaccharomyces pombe and its expression in Saccharomyces cerevisiae. J. Biol. Chem. 272(1):401–405

    Article  CAS  Google Scholar 

  20. Homuth M, Valentin-Weigand P, Rohde M, Gerlach G-F (1998) Identification and characterization of a novel extracellular ferric reductase from Mycobacterium paratuberculosis. Infect. Immun. 66(2):710–716

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Li J, Chi Z, Li H, Wang X (2008) Characterization of a mutant of Alteromonas aurantia A18 and its application in mariculture. J Ocean U China 7(1):55–59

    Article  CAS  Google Scholar 

  22. Tierrafría VH, Ramos-Aboites HE, Gosset G, Barona-Gómez F (2011) Disruption of the siderophore-binding desE receptor gene in Streptomyces coelicolor A3 (2) results in impaired growth in spite of multiple iron-siderophore transport systems. Microb. Biotechnol. 4(2):275–285

    Article  Google Scholar 

  23. Schwyn B, Neilands J (1987) Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160(1):47–56

    Article  CAS  Google Scholar 

  24. Ma J, Zhang K, Huang M, Hector SB, Liu B, Tong C, Liu Q, Zeng J, Gao Y, Xu T (2016) Involvement of Fenton chemistry in rice straw degradation by the lignocellulolytic bacterium Pantoea ananatis Sd-1. Biotechnol Biofuels 9(1):211

    Article  Google Scholar 

  25. Wu S, Zhu Z, Fu L, Niu B, Li W (2011) WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics 12(1):444

    Article  Google Scholar 

  26. McCarthy FM, Wang N, Magee GB, Nanduri B, Lawrence ML, Camon EB, Barrell DG, Hill DP, Dolan ME, Williams WP (2006) AgBase: a functional genomics resource for agriculture. BMC Genomics 7(1):229

    Article  Google Scholar 

  27. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W (2015) antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43(W1):W237–W243

    Article  CAS  Google Scholar 

  28. Grijseels S, Nielsen JC, Randelovic M, Nielsen J, Nielsen KF, Workman M, Frisvad JC (2016) Penicillium arizonense, a new, genome sequenced fungal species, reveals a high chemical diversity in secreted metabolites. Sci. Rep. 6:3511

    Article  Google Scholar 

  29. Tamura H, Goto K, Yotsuyanagi T, Nagayama M (1974) Spectrophotometric determination of iron (II) with 1, 10-phenanthroline in the presence of large amounts of iron (III). Talanta 21(4):314–318

    Article  CAS  Google Scholar 

  30. Barnett N (1970) Dipyridyl-induced cell elongation and inhibition of cell wall hydroxyproline biosynthesis. Plant Physiol. 45(2):188–191

    Article  CAS  Google Scholar 

  31. DeKock P, Vaughan D (1975) Effects of some chelating and phenolic substances on the growth of excised pea root segments. Planta 126(2):187–195

    Article  CAS  Google Scholar 

  32. Schröder I, Johnson E, de Vries S (2003) Microbial ferric iron reductases. FEMS Microbiol. Rev. 27(2–3):427–447

    Article  Google Scholar 

  33. Hammacott JE, Williams PH, Cashmore AM (2000) Candida albicans CFL1 encodes a functional ferric reductase activity that can rescue a Saccharomyces cerevisiae fre1 mutant. Microbiology 146(4):869–876

    Article  CAS  Google Scholar 

  34. Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat. Chem. Biol. 1(5):265–269

    Article  CAS  Google Scholar 

  35. Barona-Gomez F, Lautru S, Francou F, Leblond P, Pernodet J, Challis GL (2006) Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3 (2) and Streptomyces ambofaciens ATCC 23877. Microbiology 152(11):3355–3366

    Article  CAS  Google Scholar 

  36. Challis GL (2005) A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. Chembiochem 6(4):601–611

    Article  CAS  Google Scholar 

  37. Verbon EH, Trapet PL, Stringlis IA, Kruijs S, Bakker PA, Pieterse CM (2017) Iron and immunity. Annu. Rev. Phytopathol. 55(1):355–375

    Article  CAS  Google Scholar 

  38. Mao GD, Thomas P, Lopaschuk G, Poznansky M (1993) Superoxide dismutase (SOD)-catalase conjugates. Role of hydrogen peroxide and the Fenton reaction in SOD toxicity. J. Biol. Chem. 268(1):416–420

    CAS  PubMed  Google Scholar 

  39. Bruyneel B, Vande Woestyne M, Verstraete W (1989) Lactic acid bacteria: micro-organisms able to grow in the absence of available iron and copper. Biotechnol. Lett. 11(6):401–406

    Article  CAS  Google Scholar 

  40. Philpott CC, Leidgens S, Frey AG (2012) Metabolic remodeling in iron-deficient fungi. Biochim. Biophys. Acta 1823(9):1509–1520

    Article  CAS  Google Scholar 

  41. Comensoli L, Bindschedler S, Junier P, Joseph E (2017) Chapter two—iron and fungal physiology: a review of biotechnological opportunities. Adv. Appl. Microbiol. 98:31–60

    Article  CAS  Google Scholar 

  42. Eichhorn H, Lessing F, Winterberg B, Schirawski J, Kämper J, Müller P, Kahmann R (2006) A ferroxidation/permeation iron uptake system is required for virulence in Ustilago maydis. Plant Cell 18(11):3332–3345

    Article  CAS  Google Scholar 

  43. Simeoni LA, Lindsay W, Baker R (1987) Critical iron level associated with biological control of Fusarium wilt. Phytopathology 77(6):1057–1061

    Article  CAS  Google Scholar 

  44. Sipiczki M (2006) Metschnikowia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion. Appl. Environ. Microbiol. 72(10):6716–6724

    Article  CAS  Google Scholar 

  45. Cornelis P, Dingemans J (2013) Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front. Cell. Infect. Microbiol. 3(3):75

    PubMed  PubMed Central  Google Scholar 

  46. Brown JS, Holden DW (2002) Iron acquisition by Gram-positive bacterial pathogens. Microbes Infect. 4(11):1149–1156

    Article  CAS  Google Scholar 

  47. Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol. Plant-Microbe Interact. 25(1):28–36

    Article  CAS  Google Scholar 

  48. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 70(3):461–477

    Article  CAS  Google Scholar 

  49. Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol. Ecol. 51(2):215–229

    Article  CAS  Google Scholar 

  50. Li C, Zhao M, Tang C, Li S (2010) Population dynamics and identification of endophytic bacteria antagonistic toward plant-pathogenic fungi in cotton root. Microb. Ecol. 59(2):344–356

    Article  CAS  Google Scholar 

  51. Rachid D, Ahmed B (2005) Effect of iron and growth inhibitors on siderophores production by Pseudomonas fluorescens. Afr. J. Biotechnol. 4(7):697–702

    Article  CAS  Google Scholar 

  52. Manninen M, Mattila-Sandholm T (1994) Methods for the detection of Pseudomonas siderophores. J Microbiol Meth 19(3):223–234

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (31672093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghua Zhu.

Electronic supplementary material

Table S1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Xu, T., Cao, L. et al. The Role of Iron Competition in the Antagonistic Action of the Rice Endophyte Streptomyces sporocinereus OsiSh-2 Against the Pathogen Magnaporthe oryzae. Microb Ecol 76, 1021–1029 (2018). https://doi.org/10.1007/s00248-018-1189-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-018-1189-x

Keywords

Navigation