Skip to main content
Log in

Ligninolytic Activity at 0 °C of Fungi on Oak Leaves Under Snow Cover in a Mixed Forest in Japan

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Despite the importance of litter decomposition under snow cover in boreal forests and tundra, very little is known regarding the characteristics and functions of litter-decomposing fungi adapted to the cold climate. We investigated the decomposition of oak leaves in a heavy snowfall forest region of Japan. The rate of litter weight loss reached 26.5% during the snow cover period for 7 months and accounted for 64.6% of the annual loss (41.1%). Although no statistically significant lignin loss was detected, decolourization portions of oak leaf litter, which was attributable to the activities of ligninolytic fungi, were observed during snow cover period. This suggests that fungi involved in litter decomposition can produce extracellular enzymes to degrade lignin that remain active at 0 °C. Fungi were isolated from oak leaves collected from the forest floor under the snow layer. One hundred and sixty-six strains were isolated and classified into 33 operational taxonomic units (OTUs) based on culture characteristics and nuclear rDNA internal transcribed spacer (ITS) region sequences. To test the ability to degrade lignin, the production of extracellular phenoloxidases by isolates was quantified at 0 °C. Ten OTUs (9 Ascomycota and 1 Basidiomycota) of fungi exhibited mycelial growth and ligninolytic activity. These results suggested that some litter-decomposing fungi that had the potential to degrade lignin at 0 °C significantly contribute to litter decomposition under snow cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bleak AT (1970) Disappearance of plant material under a winter snow cover. Ecology 51:915–917

    Article  Google Scholar 

  2. Baptist F, Yoccoz NG, Choler P (2010) Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient. Plant Soil 328:397–410

    Article  CAS  Google Scholar 

  3. Edmonds RL (1980) Litter decomposition and nutrient release in Douglas-fir, red alder, western hemlock, and Pacific silver fir ecosystems in western Washington. Can J Forest Res 10:327–337

    Article  Google Scholar 

  4. Hobbie SE, Chapin FSIII (1996) Winter regulation of tundra litter carbon and nitrogen dynamics. Biogeochem 35:327–338

    Article  Google Scholar 

  5. MacBrayer JF, Cromack Jr K (1980) Effect of snow-pack on oak-litter breakdown and nutrient release in a Minnesota forest. Pedobiologia 20:47–54

    Google Scholar 

  6. Moore TR (1983) Winter-time litter decomposition in a subarctic woodland. Arctic Alpine Res 15:413–418

    Article  Google Scholar 

  7. O’Lear HA, Seastedt TR (1994) Landscape patterns of litter decomposition in alpine tundra. Oecologia 99:95–101

    Article  PubMed  Google Scholar 

  8. Sjögersten S, Wookey PA (2004) Decomposition of mountain birch leaf litter at the forest-tundra ecotone in the Fennoscandian mountains in relation to climate and soil conditions. Plant Soil 262:215–227

    Article  Google Scholar 

  9. Taylor BR, Jones HG (1990) Litter decomposition under snow cover in a balsam fir forest. Can J Bot 68:112–120

    Article  Google Scholar 

  10. Uchida M, Mo W, Nakatsubo T, Tsuchiya Y, Horikoshi T, Koizumi H (2005) Microbial activity and litter decomposition under snow cover in a cool-temperate broad-leaved deciduous forest. Agr Forest Meteorol 134:102–109

    Article  Google Scholar 

  11. Zhu J, He X, Wu F, Yang W, Tan B (2012) Decomposition of Abies faxoniana litter varies with freeze–thaw stages and altitudes in subalpine / alpine forests of southwest China. Scand J Forest Res 27:586–596

    Article  Google Scholar 

  12. Hardy JP, Groffman PM, Fitzhugh RD, Henry KS, Welman AT, Demers JD, Fahey TJ, Driscoll CT, Tierney GL, Nolan S (2001) Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest. Biogeochem 56:151–174

    Article  Google Scholar 

  13. Kuhnert R, Oberkofler I, Peintner U (2012) Fungal growth and biomass development is boosted by plants in snow-covered soil. Microb Ecol 64:79–90

    Article  PubMed  Google Scholar 

  14. Lipson DA, Schadt CW, Schmidt SK (2002) Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt. Microbial Ecol 43:307–314

    Article  CAS  Google Scholar 

  15. Schmidt SK, Costello EK, Nemergut DR, Cleveland CC, Reed SC, Weintraub MN, Meyer AF, Martin AM (2007) Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology 88:1379–1385

    Article  CAS  PubMed  Google Scholar 

  16. Bergero R, Girlanda M, Varese GC, Intili D, Luppi AM (1999) Psychrooligotrophic fungi from Arctic soils of Franz Joseph Land. Polar Biol 21:361–368

    Article  Google Scholar 

  17. Hoshino T, Xiao N, Tkachenko OB (2009) Cold adaptation in the phytopathogenic fungi causing snow molds. Mycoscience 50:26–38

    Article  Google Scholar 

  18. Sakamoto Y, Miyamoto T (2005) Racodium snow blight in Japan. Forest Pathol 35:1–7

    Article  Google Scholar 

  19. Schmidt SK, Wilson KL, Meyer AF, Gebauer MM, King AJ (2008) Phylogeny and ecophysiology of opportunistic “Snow Molds” from a subalpine forest ecosystem. Microbial Ecol 56:681–687

    Article  CAS  Google Scholar 

  20. Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353

    Article  CAS  Google Scholar 

  21. Porter TM, Schadt CW, Rizvi L, Martin AP, Schmidt SK, Scott-Denton L, Vilgalys R, Moncalvo JM (2008) Widespread occurrence and phylogenetic placement of a soil clone group adds a prominent new branch to the fungal tree of life. Mol Phylogenet Evol 46:635–644

    Article  CAS  PubMed  Google Scholar 

  22. Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–1361

    Article  CAS  PubMed  Google Scholar 

  23. Voříšková J, Brabcová V, Gajthaml T, Baldrian P (2014) Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytol 201:269–278

    Article  PubMed  Google Scholar 

  24. Baldrian P, Sˇnajdr J (2006) Production of ligninolytic enzymes by litter-decomposing fungi and their ability to decolorize synthetic dyes. Enzyme Microb Technol 39:1023–1029

    Article  CAS  Google Scholar 

  25. Koukol O, Baldrian P (2012) Intergeneric variability in enzyme production of microfungi from pine litter. Soil Biol Biochem 49:1–3

    Article  CAS  Google Scholar 

  26. Steffen KT, Hofrichter M, Hatakka A (2000) Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54:819–825

    Article  CAS  PubMed  Google Scholar 

  27. Steffen KT, Cajthaml T, Sˇnajdr J, Baldrian P (2007) Differential degradation of oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes. Res Microbiol 158:447–455

    Article  CAS  PubMed  Google Scholar 

  28. Valášková V, Šnajdr J, Bittner B, Cajthaml T, Merhautova V, Hofrichter M, Baldrian P (2007) Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest. Soil Biol & Biochem 39:2651–2660

    Article  Google Scholar 

  29. Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    Article  CAS  PubMed  Google Scholar 

  30. Hintikka V (1965) Psychrophilic basidiomycetes decomposing forest litter under winter conditions. Comm Inst Forest Fenn 59:1–20

    Google Scholar 

  31. Hintikka V (1970) Studies on white-rot humus formed by higher fungi in forest soils. Comm Inst Forest Fenn 69:1–68

    Google Scholar 

  32. Osono T, Hobara S, Hishinuma T, Azuma J (2011) Selective lignin decomposition and nitrogen mineralization in forest litter colonized by Clitocybe sp. Eur J Soil Biol 47:114–121

    Article  CAS  Google Scholar 

  33. Inglis GD, Popp AP, Selinger LB, Kawchuk LM, Gaudet DA, McAllister TA (2000) Production of cellulases and xylanases by low-temperature basidiomycetes. Can J Microbiol 46:860–865

    Article  CAS  PubMed  Google Scholar 

  34. Leung G, Robson GD, Robinson CH (2011) Characterisation of cold-tolerant fungi from a decomposing High Arctic moss. Soil Biol Biochem 43:1975–1979

    Article  CAS  Google Scholar 

  35. Wu F, Yang W, Zhang J, Deng R (2010) Litter decomposition in two subalpine forests during the freeze–thaw season. Acta Oecol 36:135–140

    Article  Google Scholar 

  36. Berg B, McClaugherty C (2003) Plant Litter. Decomposition, Humus formation, Carbon sequestration. Springer-Verlag, Berlin

    Google Scholar 

  37. Swift MJ, Heal OW, Anderson JM (1979) Studies in ecology vol. 5, Decomposition in terrestrial ecosystems. Blackwell Scientific Publications, Oxford

    Google Scholar 

  38. Yoshida T, Iga Y, Ozawa M, Noguchi M, Shibata H (2005) Factors influencing early vegetation establishment following soil scarification in a mixed forest in northern Japan. Can J Forest Res 35:175–188

    Article  Google Scholar 

  39. Chen C-L (1992a) Determination of methoxyl groups. In: Lin SY, Dence CW (eds) Methods in Lignin Chemistry. Springer-Verlag, Berlin, pp. 465–472

    Chapter  Google Scholar 

  40. Yamamura M, Hattori T, Suzuki S, Shibata D, Umezawa T (2010) Microscale alkaline nitrobenzene oxidation method for highthroughput determination of lignin aromatic components. Plant Biotechnol 27:305–310

    Article  CAS  Google Scholar 

  41. Kinkel LL, Andrews JH (1988) Disinfestation of living leaves by hydrogen peroxide. T Brit Mycol Soc 91:523–528

    Article  CAS  Google Scholar 

  42. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  43. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: A guide to methods and Applications. Academic Press, San Diego, pp. 315–322

    Google Scholar 

  44. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucletic Acids Res. 32:1792–1797

    Article  CAS  Google Scholar 

  45. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA 5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nishida T, Kashino Y, Mimura A, Takahara Y (1988) Lignin biodegradation by wood-rotting fungi I. Screening of lignin-degrading fungi. Mokuzai Gakkaishi 34:530–536

    Google Scholar 

  47. Mikola P (1955) Experiments on the ability of forest soil Basidiomycetes to decompose litter material. (Summary in English.) Comm Inst Forest Fenn 42:1–17

    CAS  Google Scholar 

  48. Osono T, Takeda H (2001) Effects of organic chemical quality and mineral nitrogen addition on lignin and holocellulose decomposition of beech leaf litter by Xylaria sp. Eur J Soil Biol 37:17–23

    Article  CAS  Google Scholar 

  49. Eichlerová I, Homolka L, Lisá L, Nerud F (2005) Orange G and Remazol Brilliant Blue R decolorization by white rot fungi Dichomitus squalens, Ischnoderma resinosum and Pleurotus calyptratus. Chemosphere 60:398–404

    Article  PubMed  Google Scholar 

  50. Korniłłowicz-Kowalska T, Rybczńyska K (2015) Screening of microscopic fungi and their enzyme activities for decolorization and biotransformation of some aromatic compounds. Int j Environ Sci Technol 12:2673–2686

    Article  Google Scholar 

  51. Lindeberg G (1944) Über die physiologie ligninabbauender Bodenhymenomyzeten. Symb Bot Upsal 8:1–183

    Google Scholar 

  52. Miyamoto T, Igarashi T, Takahashi K (2000) Lignin-degrading ability of litter-decomposing basidiomycetes from Picea forests of Hokkaido. Mycoscience 41:105–110

    Article  CAS  Google Scholar 

  53. Boberg JB, Ihrmark K, Lindahl BD (2011) Decomposing capacity of fungi commonly detected in Pinus sylvestris needle litter. Fungal Ecol 4:110–114

    Article  Google Scholar 

  54. Kjøller A, Struwe S (1982) Microfungi in ecosystems: fungal occurrence and activity in litter and soil. OIKOS 39:391–422

    Article  Google Scholar 

  55. Osono T, Takeda H (2002) Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan. Mycologia 94:421–427

    Article  CAS  PubMed  Google Scholar 

  56. Hering TF (1967) Fungal decomposition of oak leaf litter. T Br Mycol Soc 50:267–273

    Article  Google Scholar 

  57. Lindeberg G (1947) On the decomposition of lignin and cellulose in litter caused by soil-inhabiting Hymenomycetes. Ark bot 33A:1–16

    Google Scholar 

  58. Tanesaka E, Masuda H, Kinugawa K (1993) Wood degrading ability of basidiomycetes that are wood decomposers, litter decomposers, or mycorrhizal symbionts. Mycologia 85:347–354

    Article  Google Scholar 

  59. Okino LK, Machado KMG, Fabris C, Bononi VLR (2000) Ligninolytic activity of tropical rainforest basidiomycetes. World J Microb Biot 16:889–893

    Article  CAS  Google Scholar 

  60. Valmaseda M, Almendros G, Martínez A (1990) Substrate-dependent degradation patterns in the decay of wheat straw and beech wood by ligninolytic fungi. Appl Microbiol Biot 33:481–484

    Article  CAS  Google Scholar 

  61. Koide K, Osono T, Takeda H (2005) Fungal succession and decomposition of Camellia japonica leaf litter. Ecol Res 20:599–609

    Article  Google Scholar 

  62. Dix NJ, Webster J (1995) Fungal ecology. Chapman & Hall, London

    Book  Google Scholar 

  63. Nilsson T, Daniel G, Kirk TK, Obst JR (1989) Chemistry and microscopy of wood decay by some higher ascomycetes. Holzforschung 43:11–18

    Article  CAS  Google Scholar 

  64. Worrall JJ, Anagnost SE, Zabel RA (1997) Comparison of wood decay among diverse lignicolous fungi. Mycologia 89:199–219

    Article  Google Scholar 

  65. Dambolena JS, López AG, Meriles JM, Rubinstein HR, Zygadlo JA (2012) Inhibitory effect of 10 natural phenolic compounds on Fusarium verticillioides. A structure-property-activity relationship study. Food Control 28:163–170

    Article  CAS  Google Scholar 

  66. Russell P (1956) A selective medium for the isolation of basidiomycetes. Nature 177:1038–1039

    Article  Google Scholar 

  67. Thorn RG, Reddy CA, Harris D, Paul EA (1996) Isolation of saprophytic basidiomycetes from soil. Appl Environ Microb 62:4288–4292

    CAS  Google Scholar 

  68. Aoki T, Tokumasu S, Tubaki K (1990) Fungal succession on momi fir needles. T Mycol Soc Japan 31:355–374

    Google Scholar 

  69. Hering TF (1965) Succession of fungi in the litter of a lake district oakwood. T Brit Mycol Soc 48:391–408

    Article  Google Scholar 

  70. Kjøller A, Struwe S (1980) Microfungi of decomposing red alder leaves and their substrate utilization. Soil Biol Biochem 12:425–431

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. T. Hosoya for his comments on identification of fungi. We also thank Dr. M. Shibuya for his advice on statistical analyses. This work was partly supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science, Grant Numbers 21570013, 25440198, and 15K07468.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshizumi Miyamoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyamoto, T., Koda, K., Kawaguchi, A. et al. Ligninolytic Activity at 0 °C of Fungi on Oak Leaves Under Snow Cover in a Mixed Forest in Japan. Microb Ecol 74, 322–331 (2017). https://doi.org/10.1007/s00248-017-0952-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-0952-8

Keywords

Navigation