Skip to main content
Log in

Age-Related Response of Rumen Microbiota to Mineral Salt and Effects of Their Interactions on Enteric Methane Emissions in Cattle

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Mineral salt bricks are often used in cow raising as compensation for mineral losses to improve milk yield, growth, and metabolic activity. Generally, effects of minerals are partially thought to result from improvement of microbial metabolism, but their influence on the rumen microbiota has rarely been documented to date. In this study, we investigated the response of microbiota to mineral salt in heifer and adult cows and evaluated ruminal fermentation and enteric methane emissions of cows fed mineral salts. Twelve lactating Holstein cows and twelve heifers fed a total mixed ration (TMR) diet were randomly allocated into two groups, respectively: a treatment group comprising half of the adults and heifers that were fed mineral salt and a control group containing the other half fed a diet with no mineral salt supplement. Enteric methane emissions were reduced by 9.6% (P < 0.05) in adults ingesting a mineral salt diet, while concentrations of ruminal ammonia, butyrate, and propionate were increased to a significant extent (P < 0.05). Enteric methane emissions were also reduced in heifers ingesting a mineral salt diet, but not to a significant extent (P > 0.05). Moreover, the concentrations of ammonia and volatile fatty acids (VFAs) were not significantly altered in heifers (P > 0.05). Based on these results, we performed high-throughput sequencing to explore the bacterial and archaeal communities of the rumen samples. Succiniclasticum and Prevotella, two propionate-producing bacteria, were predominant in samples of both adults and heifers. At the phylotype level, mineral salt intake led to a significant shift from Succiniclasticum to Prevotella and Prevotellaceae populations in adults. In contrast, reduced abundance of Succiniclasticum and Prevotella phylotypes was observed, with no marked shift in propionate-producing bacteria in heifers. Methanogenic archaea were not significantly abundant between groups, either in adult cows or heifers. The shift of Succiniclasticum to Prevotella and Prevotellaceae in adults suggests a response of microbiota to mineral salt that contributes to higher propionate production, which competes for hydrogen utilized by methanogens. Our data collectively indicate that a mineral salt diet can alter interactions of bacterial taxa that result in enteric methane reduction, and this effect is also influenced in an age-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Johnson K, Johnson D (1995) Methane emissions from cattle. J Anim Sci 73:2483–2492

    Article  CAS  PubMed  Google Scholar 

  2. Hook SE, Wright ADG, McBride BW (2010) Methanogens: methane producers of the rumen and mitigation strategies. Archaea 20:1–11. doi:10.1155/2010/945785

    Article  Google Scholar 

  3. Hristov AN, Ott T, Tricarico J, Rotz A, Waghorn G, Adesogan A, Dijkstra J, Montes F, Oh J, Kebreab E, Oosting SJ, Gerber PJ, Henderson B, Makkar HP, Firkins JL (2013) Special topics-mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. J Anim Sci 91:5095–5113. doi:10.2527/jas.2013-6585

    Article  CAS  PubMed  Google Scholar 

  4. Moss AR, Jouany JP, Newbold J (2000) Methane production by ruminants: its contribution to global warming. Ann de Zootech 49:231–253

    Article  CAS  Google Scholar 

  5. Gutierrez-Banuelos H, Anderson RC, Carstens GE, Slay LJ, Ramlachan N, Horrocks SM, Callaway TR, Edrington TS, Nisbet DJ (2007) Zoonotic bacterial populations, gut fermentation characteristics and methane production in feedlot steers during oral nitroethane treatment and after the feeding of an experimental chlorate product. Anaerobe 13:21–31. doi:10.1016/j.anaerobe.2006.11.002

    Article  CAS  PubMed  Google Scholar 

  6. Brown EG, Anderson RC, Carstens GE, Gutierrez-Baňuelos H, McReynolds JL, Slay LJ, Callaway TR, Nisbet DJ (2011) Effects of oral nitroethane administration on enteric methane emissions and ruminal fermentation in cattle. Anim Feed Sci Technol 167:275–281. doi:10.1016/j.anifeedsci.2011.04.017

    Article  Google Scholar 

  7. Lila ZA, Mohammed N, Tatsuoka N, Kanda S, Kurokawa Y, Itabashi H (2004) Effect of cyclodextrin diallyl maleate on methane production, ruminal fermentation and microbes in vitro and in vivo. Anim Sci J 75:15–22. doi:10.1111/j.1740-0929.2004.00149.x

    Article  CAS  Google Scholar 

  8. Grainger C, Williams R, Eckard RJ, Hannah MC (2010) A high dose of monensin does not reduce methane emissions of dairy cows offered pasture supplemented with grain. J Dairy Sci 93:5300–5308. doi:10.3168/jds.2010-3154

    Article  CAS  PubMed  Google Scholar 

  9. Goel G, Makkar HPS (2012) Methane mitigation from ruminants using tannins and saponins. Trop Anim Health Prod 44:729–739. doi:10.1007/s11250-011-9966-2

    Article  PubMed  Google Scholar 

  10. Wang JK, Ye JA, Liu JX (2013) Effects of tea saponins on rumen microbiota, rumen fermentation, methane production and growth performance—a review. Trop Anim Health Prod 44:697–706. doi:10.1007/s11250-011-9960-8

    Article  Google Scholar 

  11. Zhou M, Chung YH, Beauchemin KA, Holtshausen L, Oba M, McAllister TA, Guan LL (2011) Relationship between rumen methanogens and methane production in dairy cows fed diets supplemented with a feed enzyme additive. J Appl Microbiol 111:1148–1158. doi:10.1111/j.1365-2672.2011.05126.x

    Article  CAS  PubMed  Google Scholar 

  12. Kim SH, Mamuad LL, Kim DW, Kim SK, Lee SS (2016) Fumarate reductase-producing enterococci reduce methane production in rumen fermentation in vitro. J Microbiol Biotechnol 26:558–566. doi:10.4014/jmb.1512.12008

    Article  CAS  PubMed  Google Scholar 

  13. Morris JG (1980) Assessment of sodium requirements of grazing beef cattle: a review. J Anim Sci 50:145–152

    Article  CAS  PubMed  Google Scholar 

  14. Oconnor M, Hawke MF, Waller JE, Rotherham J, Coulter SP (2000) Salt supplementation of dairy cows. Pro New Zealand Grass Associ 62:49–53

    Google Scholar 

  15. Kincaid RL, Socha MT, Acan PAS (2004) Inorganic versus complexed trace mineral supplements on performance of dairy cows. Prod Anim Sci 20:66–73

    Google Scholar 

  16. Thauer RK, Kaster AK, Seedorf H, Bucke W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nature 6:579–591. doi:10.1038/nrmicro1931

    CAS  Google Scholar 

  17. Ng F, Kittelmann S, Patchett ML, Attwood GT, Janssen PH, Rakonjac J, Gagic D (2015) An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms. Environ Microbiol. doi:10.1111/1462-2920.13155

    Google Scholar 

  18. Lassey KR (2008) Livestock methane emission and its perspective in the global methane cycle. Aus J Exp Agric 48:114–118. doi:10.1071/EA07220

    Article  CAS  Google Scholar 

  19. Boadi DA, Wittenberg KM, Kennedy AD (2002) Validation of the sulphur hexafluoride (SF6) tracer gas technique for measurement of methane and carbon dioxide production by cattle. Can J Anim Sci 82:125–131. doi:10.4141/A01-054

    Article  CAS  Google Scholar 

  20. Hoskin SO, Stafford KJ, Barry TN (1995) Digestion, rumen fermentation and chewing behaviour of red deer fed fresh chicory and perennial ryegrass. J Agri Sci 124:289–295. doi:10.1017/S0021859600072956

    Article  Google Scholar 

  21. Chaney AL, Marbach EP (1962) Modified reagents for determination of urea and ammonia. Clin Chem 8:130–137

    CAS  PubMed  Google Scholar 

  22. Teske A, Sørensen KB (2008) Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J 2:3–18. doi:10.1038/ismej.2007.90

    Article  CAS  PubMed  Google Scholar 

  23. Nossa CW, Oberdorf WE, Yang L, Aas JA, Paster BJ, Desantis TZ (2010) Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J Gastroenterol 16:4135–4144. doi:10.3748/wjg.v16.i33.4135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Gaskins HR, Stumpf RM, Yildirim S, Torralba M, Gillis M, Wilson BA, Nelson KE, White BA, Leigh SR (2013) Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J 7:1344–1353. doi:10.1038/ismej.2013.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2010) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. doi:10.1186/gb-2011-12-6-r60

    Article  Google Scholar 

  26. DeFrain JM, Socha MT, Tomlinson DJ, Kluth D (2009) Effect of complexed trace minerals on the performance of lactating dairy cows on a commercial dairy. Prod Anim Sci 25:709–715

    Google Scholar 

  27. Hackbart KS, Ferreira RM, Dietsche AA, Socha MT, Shaver RD, Wiltbank MC, Fricke PM (2010) Effect of dietary organic zinc, manganese, copper, and cobalt supplementation on milk production, follicular growth, embryo quality, and tissue mineral concentrations in dairy cows. J Anim Sci 88:3856–3870. doi:10.2527/jas.2010-3055

    Article  CAS  PubMed  Google Scholar 

  28. Parmar NR, Solanki JV, Patel AB, Shah TM, Patel AK, Parnerkar S, Kumar JI, Joshi CG (2014) Metagenome of Mehsani buffalo rumen microbiota: an assessment of variation in feed-dependent phylogenetic and functional classification. J Mol Microbiol Biotechnol 24:249–261. doi:10.1159/000365054

    Article  CAS  PubMed  Google Scholar 

  29. Bergman EN (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70:567–590

    CAS  PubMed  Google Scholar 

  30. Russell JB (1998) The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro. J Dairy Sci 81:3222–3230. doi:10.3168/jds.S0022-0302(98)75886-2

    Article  CAS  PubMed  Google Scholar 

  31. Morgavi DP, Martin C, Boudra H (2013) Fungal secondary metabolites from Monascus spp. reduce rumen methane production in vitro and in vivo. J Anim Sci 91:848–860. doi:10.2527/jas.2012-5665

    Article  CAS  PubMed  Google Scholar 

  32. McCabe MS, Cormican P, Keogh K, O’Connor A, O’Hara E, Palladino RA, Kenny DA, Waters SM (2015) Illumina MiSeq phylogenetic amplicon sequencing shows a large reduction of an uncharacterised succinivibrionaceae and an increase of the Methanobrevibacter gottschalkii clade in feed restricted cattle. PLoS One 10:e0133234. doi:10.1371/journal.pone.0133234

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lettat A, Hassanat F, Benchaar C (2013) Corn silage in dairy cow diets to reduce ruminal methanogenesis: effects on the rumen metabolically active microbial communities. J Dairy Sci 96:5237–5248. doi:10.3168/jds.2012-6481

    Article  CAS  PubMed  Google Scholar 

  34. Morgavi DP, Forano E, Martin C, Newbold CJ (2010) Microbial ecosystem and methanogenesis in ruminants. Animal 4:1024–1036. doi:10.1017/S1751731110000546

    Article  CAS  PubMed  Google Scholar 

  35. Wright ADG, Ma X, Obispo NE (2008) Methanobrevibacter phylotypes are the dominant methanogens in sheep from Venezuela. Microbiol Ecol 56:390–394. doi:10.1007/s00248-007-9351-x

    Article  Google Scholar 

  36. Zhou M, Sanabria EH, Guan L (2010) Characterization of rumen methanogenic community variation under different diets and host feed efficiencies using PCR-DGGE analysis. Appl Environ Microbiol 76:3776–3786. doi:10.1128/AEM.00010-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Janssen PH, Kirs M (2008) Structure of the archaeal community of the rumen. Appl Environ Microbiol 74:3619–3625. doi:10.1128/AEM.02812-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Seedorf H, Kittelmann S, Henderson G, Janssen PH (2014) Rim-DB: a taxonomic framework for community structure analysis of methanogenic archaea from the rumen and other intestinal environments. Peer J 2, e494. doi:10.7717/peerj.494

    Article  PubMed  PubMed Central  Google Scholar 

  39. Henderson G, Cox F, Ganesh S, Jonker A, Young W, Collaborators GRC, Janssen PH (2015) Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 5:14567. doi:10.1038/srep14567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kittelmann S, Pinares-Patinño CS, Seedorf H, Kirk MR, Ganesh S, McEwan JC, Janssen PH (2014) Two different bacterial community types are linked with the low-methane emission trait in sheep. PLoS One 9:e103171. doi:10.1371/journal.pone.0103171

    Article  PubMed  PubMed Central  Google Scholar 

  41. Strobel HJ (1992) Vitamin B12-dependent propionate production by the ruminal bacterium Prevotella ruminicola. Appl Environ Microbiol 58:2331–2333

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. O’Neill BF, Deighton MH, O’Loughlin BM, Mulligan FJ, Boland TM, O’Donovan M, Lewis E (2011) Effects of a perennial ryegrass diet or total mixed ration diet offered to spring-calving Holstein-Friesian dairy cows on methane emissions, dry matter intake, and milk production. J Dairy Sci 94:1941–1951. doi:10.3168/jds.2010-3361

    Article  PubMed  Google Scholar 

  44. McCann JC, Wickersham TA, Loor JJ (2014) High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. Bioinf Biol Insights 8:109–125. doi:10.4137/BBI.S15389

    Article  CAS  Google Scholar 

  45. Denman SE, Martinez FG, Shinkai T, Mitsumori M, McSweeney CS (2015) Metagenomic analysis of the rumen microbial community following inhibition of methane formation by a halogenated methane analog. Front Microbiol 6:1087. doi:10.3389/fmicb.2015.01087

    Article  PubMed  PubMed Central  Google Scholar 

  46. Martinez-fernandez G, Denman SE, Yang C, Cheung J, Mitsumori M, Mcsweeney CS (2016) Methane inhibition alters the microbial community, hydrogen flow and fermentation response in the rumen of cattle. Front Microbiol 7:1122. doi:10.3389/fmicb.2016.01122

    Article  PubMed  PubMed Central  Google Scholar 

  47. Van Gylswyk NO (1995) Succiniclasticum ruminis gen. nov. sp. nov., a rumen bacterium converting succinate to propionate as sole energy yielding mechanism. Int J Syst Bacteriol 45:297–300. doi:10.1099/00207713-45-2-297

    Article  PubMed  Google Scholar 

  48. Morotomi M, Nagai F, Sakon H, Tanaka R (2008) Dialister succinatiphilus sp. nov. and Barnesiella intestinihominis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 58:2716–2720. doi:10.1099/ijs.0.2008/000810-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is finacially supported by National Water Pollution Control and Treatment Science and Technology Major Project in China (2015ZX07103-007-022). We are particularly grateful to Dr. Guo Guang’s support with the data interpretation and design discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Dong.

Ethics declarations

This study was performed on an experimental farm and granted permission by farm administrators. The experimental protocol was approved by the Animal Care and Use Committee of the Chinese Academy of Agricultural Sciences, and care of experimental animals was provided in accordance with Chinese standards.

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

C Liu and XH Li are co-first authors.

Author contributions Conceived and designed the experiments: C Liu. Performed the experiments: C Liu, XH Li, YX Chen, ZH Cheng, QH Duan, QH Meng, XP Tao and B Shang. Analyzed the data: C Liu, XH Li, YX Chen. Contributed reagents/materials/analysis tools: XH Li and HM Dong. Wrote the paper: C Liu and XH Li. All authors agree to be accountable for all aspects of the work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

Rarefaction analysis of the different samples. Rarefaction curves of OTUs clustered at 97% sequence identity across different environmental samples for bacteria and archaea. (DOCX 333 kb)

Fig. S2

The heatmap diagram showing the dominant bacterial taxa at the phylum (a) and genus (b) levels and the dominant archaeal taxa at the phylum (c) and genus (d) levels in different groups. AC: adult control; AT: adult treatment; HC: heifer control; HT: heifer treatment. (DOCX 382 kb)

Fig. S3

Differential archaeal OTUs identified by LEfSe between the treatment and control groups. Histogram shows OTUs that are more differential and abundant in the treatment (blue) or control (orange) group for adult (a and c) and heifer (b and d). (DOCX 117 kb)

Table S1

Ingredients and chemical composition of the diet (based on dry material). (DOCX 17.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, X.H., Chen, Y.X. et al. Age-Related Response of Rumen Microbiota to Mineral Salt and Effects of Their Interactions on Enteric Methane Emissions in Cattle. Microb Ecol 73, 590–601 (2017). https://doi.org/10.1007/s00248-016-0888-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0888-4

Keywords

Navigation